Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaving Waste Goodbye

18.06.2008
Malaysia produce 70 million tons of organic wastes annually. Most of these are either incinerated or dumped in landfill and both of which have serious impact on the environment. A research is conducted at Universiti Malaysia Sarawak to reutilise the wastes and explore their potential as energy sources.

In Malaysia, approximately 70 million tones of organic wastes are generated annually as municipal solid wastes, agricultural residues, animal wastes, sewage sludge from wastewater treatment plant and wood chips.

Most of these wastes are either incinerated or dumped in landfill. The latter requires precious open lands, while the former contributes to serious atmospheric pollution. Both of which have serious impact on the environment. The country, therefore, needs to adopt a more practical, economic and acceptable approach in managing and disposing the organic wastes.

The thing about organic wastes is that they harbour abundance volatile matter which can be converted to fuel through suitable treatment, such as pyrolysis. This possible method is receiving increasing attention as an economic and environmentally acceptable route to waste disposal due to its ability to produce fuel gases and oil.

The latest development in the pyrolysis technology is the application of heat by using microwave energy. Microwave treatment might serve as an alternative method for drying, pyrolysing and gasifying the organic wastes in one single step. The research in this method, however, has not been extensive. Published information on microwave pyrolysis design and process condition is also lacking.

A research group at the Department of Chemistry, University Malaysia Sarawak, has designed a laboratory scale microwave pyrolysis system through modification of laboratory microwave oven. The aim is to conduct chemical characterisation of the waste samples and their microwave pyrolysis products, and to optimise the microwave pyrolysis processes for optimum biofuel yield which is environmentally acceptable. The main focus is to develop an efficient, simple and low-temperature based process for converting organic wastes into useful renewable energy sources.

Preliminary studies on low-temperature microwave pyrolysis of sewage sludge suggest a fuel material potential, comparable to the lower grade coal.It is hoped that data gathered in this study will provide useful information on the microwave pyrolysis of organic wastes and the potential use of the process as an alternative for the reutilisation of wastes, which at the same time produce renewable energy sources for industries in Malaysia.

ABOUT UNIVERSITI MALAYSIA SARAWAK (UNIMAS)

UNIMAS was established in 1992. The University's mission is to generate, disseminate and apply knowledge strategically and innovatively to enhance the quality of the nation’s culture and prosperity of its people. The knowledge creation initiatives at UNIMAS are premised partly upon the wealth of natural resources and diverse socio-cultural make up of the State of Sarawak. UNIMAS commitment to research has already been recognized by the stakeholders and partners in industry through provision of endowments for the establishment of eight research chairs; these include the Tun Zaidi Chair for Medicinal Chemistry, the Tun Openg Chair for Sago Technology, the Shell Chair for Environmental Studies, and the Sapura Chair for ICT.

Resni Mona | ResearchSEA
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>