Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaving Waste Goodbye

18.06.2008
Malaysia produce 70 million tons of organic wastes annually. Most of these are either incinerated or dumped in landfill and both of which have serious impact on the environment. A research is conducted at Universiti Malaysia Sarawak to reutilise the wastes and explore their potential as energy sources.

In Malaysia, approximately 70 million tones of organic wastes are generated annually as municipal solid wastes, agricultural residues, animal wastes, sewage sludge from wastewater treatment plant and wood chips.

Most of these wastes are either incinerated or dumped in landfill. The latter requires precious open lands, while the former contributes to serious atmospheric pollution. Both of which have serious impact on the environment. The country, therefore, needs to adopt a more practical, economic and acceptable approach in managing and disposing the organic wastes.

The thing about organic wastes is that they harbour abundance volatile matter which can be converted to fuel through suitable treatment, such as pyrolysis. This possible method is receiving increasing attention as an economic and environmentally acceptable route to waste disposal due to its ability to produce fuel gases and oil.

The latest development in the pyrolysis technology is the application of heat by using microwave energy. Microwave treatment might serve as an alternative method for drying, pyrolysing and gasifying the organic wastes in one single step. The research in this method, however, has not been extensive. Published information on microwave pyrolysis design and process condition is also lacking.

A research group at the Department of Chemistry, University Malaysia Sarawak, has designed a laboratory scale microwave pyrolysis system through modification of laboratory microwave oven. The aim is to conduct chemical characterisation of the waste samples and their microwave pyrolysis products, and to optimise the microwave pyrolysis processes for optimum biofuel yield which is environmentally acceptable. The main focus is to develop an efficient, simple and low-temperature based process for converting organic wastes into useful renewable energy sources.

Preliminary studies on low-temperature microwave pyrolysis of sewage sludge suggest a fuel material potential, comparable to the lower grade coal.It is hoped that data gathered in this study will provide useful information on the microwave pyrolysis of organic wastes and the potential use of the process as an alternative for the reutilisation of wastes, which at the same time produce renewable energy sources for industries in Malaysia.

ABOUT UNIVERSITI MALAYSIA SARAWAK (UNIMAS)

UNIMAS was established in 1992. The University's mission is to generate, disseminate and apply knowledge strategically and innovatively to enhance the quality of the nation’s culture and prosperity of its people. The knowledge creation initiatives at UNIMAS are premised partly upon the wealth of natural resources and diverse socio-cultural make up of the State of Sarawak. UNIMAS commitment to research has already been recognized by the stakeholders and partners in industry through provision of endowments for the establishment of eight research chairs; these include the Tun Zaidi Chair for Medicinal Chemistry, the Tun Openg Chair for Sago Technology, the Shell Chair for Environmental Studies, and the Sapura Chair for ICT.

Resni Mona | ResearchSEA
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>