Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aquatic Insect ‘Family Trees’ Provide Clues About Sensitivity to Pollution

18.06.2008
A North Carolina State University study published online this week in Proceedings of the National Academy of Sciences shows that examining an insect’s “family tree” might help predict a “cousin” insect’s level of tolerance to pollutants, and therefore could be a reliable way to understand why certain insect species thrive or suffer under specific ecological conditions.

Evaluations of the health and well-being of rivers and streams are frequently tied to the presence – or absence – of resident aquatic insects. But these population evaluations are not designed to explain why certain species may be disappearing from specific places, says Dr. David Buchwalter, an NC State assistant professor of environmental and molecular toxicology and the lead author of the paper.

“Our results are exciting because they open up the possibility of predicting species’ tolerance to environmental problems based on their evolutionary histories,” Buchwalter says. This predictive power would give scientists a leg up on understanding insect responses to environmental stressors in the more than 6,500 aquatic insect species in North America.

In the study, Buchwalter and colleagues from the University of California, Riverside, and the U.S. Geological Survey examined how 21 species of insects field-collected from streams in North Carolina, California, Colorado and Oregon tolerated cadmium, a trace metal cancerous to humans that is used in batteries and found near hard-rock mining and industrial sites.

By exposing the insects to a gamma emitting isotope of cadmium – a technique that allowed the scientists to gauge metallic concentrations in live insects over time – the researchers measured cadmium intake rates; cadmium elimination rates; whether insects “detoxified” metals using proteins; and whether related insects showed similar resistance or tolerance to cadmium.

The study showed a great deal of variation in how these insects internally process cadmium, including a 65-fold difference in uptake and a 25-fold difference in the rate at which different species eliminated it from their tissues.

For the most part, though, insects in the same family were similar when it came to pollution sensitivity.

The study also showed that species could face a trade-off between being able to protect cells from cadmium and being able to eliminate it from their tissues. “This paper helps explain why, in the same water, different species can carry around very different concentrations of metals,” Buchwalter says. “And some species can carry those metal loads better than others.”

“Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility”
Authors: David Buchwalter, Lingtian Xie, Caitrin Martin, North Carolina State University; Theodore Garland, University of California, Riverside; S.N. Luoma and D.J. Cain, U.S. Geological Survey

Published: The week of June 16, 2008, online in Proceedings of the National Academy of Sciences

Abstract: We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon’s physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

Dr. David Buchwalter | newswise
Further information:
http://www.ncsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>