Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury contamination found in stranded Victorian dolphins

10.06.2008
Monash University research into heavy metal contaminant levels in dolphins from Port Phillip Bay and the Gippsland Lakes has revealed high mercury levels may be a contributing factor to dolphin deaths

Monash University research into heavy metal contaminant levels in dolphins from Port Phillip Bay and the Gippsland Lakes has revealed high mercury levels may be a contributing factor to dolphin deaths.

Researchers from the School of Biological Sciences have confirmed levels of mercury found in the dolphins were within a range considered to cause negative health and mental effects and were higher than mercury levels found in populations around the world.

Supervisory researcher Dr Ross Thompson said the mercury concentrations in 20 live and eight dolphins which died after becoming stranded, collected over the last two years, were measured by Honours student Alissa Monk. Levels in the dead dolphins averaged 3.45 milligrams of mercury per kilogram of tissue compared to 1.32 mg/kg in living dolphins.

"Mercury levels detected are sufficient to cause significant health impacts and were comparable to those found in areas of the world that are considered highly polluted, including the Mediterranean Sea," Dr Thompson said.

Mercury has been shown in previous national studies to bioaccumulate in dolphins, but this is the first study to find particularly high levels in stranded animals in coastal Victoria. Bioaccumulation is the food chain process whereby smaller fish containing mercury are eaten by larger mercury contaminated fish, which are then consumed by dolphins, who can consume up to ten kilograms of fish a day. Mercury levels found in fish were considered low (

"Dolphins may be becoming stranded as a direct consequence of mercury contamination which damages their neurological system. They become potentially confused and disorientated, and strand themselves. Even the apparently healthy dolphins had high levels of mercury which put them at risk of future health complications," Dr Thompson said.

Dr Thompson said mercury is likely to have come from the sediments of the Bay and researchers are concerned that dredging activities may increase the dolphins' exposure.

"Sediment contains mercury, which is likely to have originated from historical gold mining sites where mercury was used in gold processing, as well as from other industrial sources. Over time, the mercury has been washed down through waterways, including the Yarra River, and come to rest on the bottom of the Bay," Dr Thompson said.

Dr Thompson said it was critical that further studies were done throughout the bay dredging process to ensure any further decline in dolphin health could be identified and managed.

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>