Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological Globalization: Scientists Examine Ecosystem Connectivity Using Long-term Studies

03.06.2008
Ecosystems are constantly exchanging materials through the movement of air in the atmosphere, the flow of water in rivers and the migration of animals across the landscape.

People, however, have also established themselves as another major driver of connectivity among ecosystems. In the June 2008 Special Issue of Frontiers in Ecology and the Environment, titled “Continental-scale ecology in an increasingly connected world,” ecologists discuss how human influences interact with natural processes to influence connectivity at the continental scale.

The authors conclude that networks of large-scale experiments are needed to predict long-term ecological change.

“We know that the world has always been connected via a common atmosphere and the movement of water,” says Debra Peters, an author in the issue and a scientist with the United States Department of Agriculture’s Agricultural Research Service (USDA-ARS). “The world is also becoming highly interconnected through the movement of people and the transport of goods locally to globally. Among ecologists, there is an increasing realization that these connections can have profound influences on the long-term dynamics of ecological systems.”

The transport of many types of materials, including gases, minerals and even organisms, can affect natural systems. This movement results in “greenlash,” which occurs when environmental changes localized to a small geographic area have far-reaching effects in other areas. For example, a drought in the 1930’s caused small-scale farmers to abandon their farms across the U.S. Midwest. The absence of crops intensified local soil erosion, leading to powerful dust storms. Large amounts of wind-swept dust traveled across the continent, causing the infamous Dust Bowl and affecting air quality, public health and patterns of human settlement throughout the country.

Because of increasing globalization, people often inadvertently introduce non-native plants, animals and diseases into new locations. Invasive species and pathogens, such as fire ants from South America and the SARS virus from China, can create large, expensive problems: the U.S. currently spends over $120 billion per year on measures to prevent and eradicate invasive species. Understanding ecosystem connectivity across a range of scales – from local to regional to continental – will help scientists predict where invasive species are likely to go next.

The authors agree that field ecology studies should focus on long-term sampling networks that encompass a range of geographical scales. Integrating data from existing and developing networks, such as the National Science Foundation’s Long Term Ecological Research network (LTER) and NSF’s National Ecological Observatory Network (NEON), will lead to a level of power for ecological comparison unparalleled by any one experiment.

“To draw conclusions about the consequences of increasing connectivity, we need to provide information about processes that span a vast scale of space and time,” says David Schimel, an author in the issue and the chief executive officer of the NEON project. “Our observations will characterize ecological processes from the genomic to the continental and document changes from seconds to decades.”

Additionally, the authors suggest that long-term studies should include data from social and behavioral science to allow incorporation of human movement patterns into their scientific models. Ecologists hope that understanding the patterns of connectivity within and among ecosystems will lead to more accurate predictions of future ecological change.

To learn more about ecological connectivity, look for a podcast interview with Debra Peters on the Ecological Society of America’s web site at http://www.esa.org/podcast on June 2.

The Special Issue of Frontiers was supported by funding from the National Science Foundation, USDA-ARS, and the Consortium for Regional Ecological Observatories. The issue is free and will be available to the public June 1 at http://www.frontiersinecology.org/.

The Ecological Society of America is the world’s largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four journals and convenes an annual scientific conference. Visit the ESA website at http://www.esa.org.

Christine Buckley | newswise
Further information:
http://www.frontiersinecology.org/
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>