Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest canopies help determine natural fertilization rates

30.05.2008
Scientists clarify controls on boreal nitrogen resource that dictates long-term forest productivity

In this week’s issue of Science, a US and Swedish research team report on a newly identified factor that controls the natural input of new nitrogen into boreal forest ecosystems.

Nitrogen is the primary nutrient that dictates productivity (and thus carbon consumption) in boreal forests. In pristine boreal ecosystems, most new nitrogen enters the forest through cyanobacteria living on the shoots of feather mosses, which grows in dense cushions on the forest floor. These bacteria convert nitrogen from the atmosphere to a form that can be used by other living organisms, a process referred to as “nitrogen-fixation.” The researchers showed that this natural fertilization process appears to be partially controlled by trees and shrubs that sit above the feather mosses.

In the summer of 2006, the researchers placed small tubes, called resin lysimeters, in the moss layer to catch nitrogen deposited on the feather moss carpets from the above canopy and then monitored nitrogen fixation rates in the mosses. The studies revealed that when high levels of nitrogen were deposited on the moss cushion from above, a condition typical of young forests, nitrogen fixation was extremely low. In older, low-productivity forests, very little nitrogen was deposited on the moss cushion, resulting in extremely high nitrogen fixation rates.

Nitrogen fixation is an energy demanding process. Thus, when mosses are exposed to high concentrations of bioavailable nitrogen, the cyanobacteria will consume this resident nitrogen rather than expending energy on fixing new nitrogen. Thus the nitrogen content of canopy throughfall acts as a regulator of newly fixed nitrogen into these boreal forests. For this same reason, elevated nitrogen deposition from pollution likely reduces moss nitrogen fixation rates. The moss would initially buffer the forest against the effect of nitrogen added as pollution or fertilizer; however, chronic elevated nitrogen inputs would ultimately eliminate this natural source of forest fertility.

The feather moss-cyanobacterial association provides a unique model system in which to study nitrogen feedback mechanisms. The cyanobacteria reside on the leaves, thus the nitrogen status of the canopy throughfall directly influences nitrogen fixation in the feather mosses. This direct expression of a nutrient feedback mechanism could not be detected in other nitrogen fixing plant species, such as legumes, that house their nitrogen fixing bacteria below ground and where soils and decomposing litter intercept and modify the nitrogen from throughfall before it reaches the bacteria.

These findings are important from a global standpoint, because feather mosses (and associated cyanobacteria) are the primary source of biologically fixed nitrogen in the boreal forest biome. The dominating feathermoss Pleurozium schreberi is also found in arctic and temperate biomes and thus may be the widest distributed individual nitrogen-fixing plant species on Earth. Understanding feed back mechanisms among dominating organisms that regulate fundamental ecosystem processes are integral to our ability to predict long term outcomes of global carbon dynamics.

Sven-Olov Bylund | alfa
Further information:
http://www.sciencemag.org
http://www.slu.se

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>