Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest canopies help determine natural fertilization rates

30.05.2008
Scientists clarify controls on boreal nitrogen resource that dictates long-term forest productivity

In this week’s issue of Science, a US and Swedish research team report on a newly identified factor that controls the natural input of new nitrogen into boreal forest ecosystems.

Nitrogen is the primary nutrient that dictates productivity (and thus carbon consumption) in boreal forests. In pristine boreal ecosystems, most new nitrogen enters the forest through cyanobacteria living on the shoots of feather mosses, which grows in dense cushions on the forest floor. These bacteria convert nitrogen from the atmosphere to a form that can be used by other living organisms, a process referred to as “nitrogen-fixation.” The researchers showed that this natural fertilization process appears to be partially controlled by trees and shrubs that sit above the feather mosses.

In the summer of 2006, the researchers placed small tubes, called resin lysimeters, in the moss layer to catch nitrogen deposited on the feather moss carpets from the above canopy and then monitored nitrogen fixation rates in the mosses. The studies revealed that when high levels of nitrogen were deposited on the moss cushion from above, a condition typical of young forests, nitrogen fixation was extremely low. In older, low-productivity forests, very little nitrogen was deposited on the moss cushion, resulting in extremely high nitrogen fixation rates.

Nitrogen fixation is an energy demanding process. Thus, when mosses are exposed to high concentrations of bioavailable nitrogen, the cyanobacteria will consume this resident nitrogen rather than expending energy on fixing new nitrogen. Thus the nitrogen content of canopy throughfall acts as a regulator of newly fixed nitrogen into these boreal forests. For this same reason, elevated nitrogen deposition from pollution likely reduces moss nitrogen fixation rates. The moss would initially buffer the forest against the effect of nitrogen added as pollution or fertilizer; however, chronic elevated nitrogen inputs would ultimately eliminate this natural source of forest fertility.

The feather moss-cyanobacterial association provides a unique model system in which to study nitrogen feedback mechanisms. The cyanobacteria reside on the leaves, thus the nitrogen status of the canopy throughfall directly influences nitrogen fixation in the feather mosses. This direct expression of a nutrient feedback mechanism could not be detected in other nitrogen fixing plant species, such as legumes, that house their nitrogen fixing bacteria below ground and where soils and decomposing litter intercept and modify the nitrogen from throughfall before it reaches the bacteria.

These findings are important from a global standpoint, because feather mosses (and associated cyanobacteria) are the primary source of biologically fixed nitrogen in the boreal forest biome. The dominating feathermoss Pleurozium schreberi is also found in arctic and temperate biomes and thus may be the widest distributed individual nitrogen-fixing plant species on Earth. Understanding feed back mechanisms among dominating organisms that regulate fundamental ecosystem processes are integral to our ability to predict long term outcomes of global carbon dynamics.

Sven-Olov Bylund | alfa
Further information:
http://www.sciencemag.org
http://www.slu.se

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>