Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate and Resource Protection for Africa

29.05.2008
Cooperation of University of Stuttgart with the Cities of Johannesburg and Addis Abeba

More than half of the world population lives in urban areas by now - rising continues. As a consequence the challenges in the fields of infrastructure, energy and environment are growing. Against this background two research projects of the University of Stuttgart seek to develop solutions for these problems.

In the first project scientists identify and evaluate instruments for achieving a sustainable energy supply and climate protection in the South African ‘City Region of Gauteng’, comprising the cities of Johannesburg, Ekurhuleni and Tshwane (incl. Pretoria). The second project is dedicated to the waste management in Ethiopians capital Addis Abeba. It is conducted in cooperation with the local University and NGOs.

The aim of the project is to reduce the greenhouse gases and to allow additional employments with acceptable working conditions. In both projects, the University of Stuttgart, the city of Stuttgart and the cities of Johannesburg, Ekurhuleni and Tshwane as well as the city of Addis Abeba are closely integrated. The official project start is June, 1st. The German Federal Ministry of Education and Research (BMBF) funds the two projects with an amount of 8.5 million euros in five years.

The EnerKey project - Energy as a key element (www.enerkey.info)
Energy is a key element for designing a sustainable life in urban areas like the City Region of Gauteng with more than ten millions of inhabitants. Therefore the “EnerKey” project (Energy as a Key-Element), coordinated by the Institute of Energy Economics and the Rational Use of Energy (IER, University of Stuttgart) develops strategies and approaches for a reaching sustainable and climate compatible energy supply structures. “This includes energy efficient settlement patterns as well as the environmental friendly supply with energy for the growing demand on energy” states Prof. Alfred Voss, director of the IER. He adds: “Regarding the current energy crises, the neglected construction of power plants as well as the uncontrolled growth of settlements, priority should be given to improving the energy efficiency”. Moreover, efficient technologies, such as power plants, particularly also solar energy for hot water supply, are analysed. The scientists of IER will identify and analyse instruments and approaches for planning and evaluating such technologies together with their project partners. For the urban areas in South Africa poverty reduction is a central challenge. Therefore the projects will identify cost-efficient power supply technologies for “informal settlements” in order to avoid negative impacts on health and fire hazards due to the utilisation of paraffin. By presenting local demonstration projects a praxis oriented concept is applied. Besides the scientists of the University of Stuttgart, experts from the communal administration of the city of Stuttgart and the three big cities of the Gauteng-region, further scientists of other institutions and from enterprises and are taking part. “A well established network between both countries and different stakeholders was set up during a two years lasting pre-project-phase” reports the project manager Dr. Ludger Eltrop from IER. In addition to the financial promotion of the BMBF, the newly found South African National Research Institute (SANERI), the National Research Foundation and the University of Johannesburg supports the South African partners with five million Rand. This shows the interest and active integration of the South African partners into the project. In the framework of the BMBF research program “Energy and climate efficient structures in urban growth areas” the project is supported with four million euros, thereof 1.3 millions for the IER. “The creation of sustainable energy supply structures in urban areas is of interest not only for developing countries but also for Germany” mentions Prof. Alfred Voss. This goes along with the current tenders for further projects by the federal ministry of education and research (BMBF) for “energy efficient cities”. “These targets can only be fulfilled if experts from academia and municipalities will work together in the long term” argues Joachim von Zimmermann, head of the communal department of environmental protection of the city of Stuttgart.
Resource instead of Waste
Highly populated megacities in developing countries are characterized by a lack of adequate infrastructure for the collection, treatment and valorisation of wastes, and by deficient administrative and regulatory conditions to ensure a sustainable management of refuse. As a result, unsanitary conditions for the population proliferate, resources are lost, and greenhouse gases are emitted without control into the atmosphere. Professor Martin Kranert, from the Institute of Sanitary Engineering, Water Quality and Solid Waste Management (ISWA) of the Universität Stuttgart, postulates: “Sustainable valorisation of wastes leads to the conservation of resources, generates income for the population, and decreases the emissions of greenhouse gases and other substances.” This thesis will be explored in the city of Addis Ababa, Ethiopia, within the project “IGNIS - Income Generation & Climate Protection through Valorisation of Municipal Solid Wastes in a Sustainable Way in Emerging Megacities”. The project, which is funded within the programme “Energy and climate efficient structures in urban growth centres” by the German Federal Ministry of Education and Research with a total budget of 4.5 Million Euros, shall contribute to the solution of the waste problematic, including the associated greenhouse gas emissions, in emerging megacities.

Together with the Chair of Waste Management and Emissions (ISWA), the Institut for Future Energy Systems (IZES), the Federal Institute for Occupational Safety and Health (FIOSH), the Environmental Development Action in the Third World (ENDA), the Addis Ababa University (Civil Engineering Department and Regional and Local Development Studies Department) and the Addis Ababa Environmental Protection Agency (EPA) form an interdisciplinary consortium, which will be responsible for the project execution. The Association for the Promotion of Socially and Environmentally Appropriate Technology (AT-Verband) is in charge of the project’s coordination. The project partners will provide for the inclusion of local stakeholders, the implementation of pilot projects, assessment of the environmental, occupational health, social and economic impacts of the waste management measures, as well as for the training of local stakeholders and for public awareness campaigns.

The IGNIS project involves in its first stage the collection of geographic, waste and emission related data in order to establish a coherent and reliable information basis for Addis Ababa. In a following stage, decentralized plants will be setup and operated at pilot scale in Ethiopia’s capital, including plants for biowaste composting, biogasification, recycling, and improved waste collection. The Chair of Waste Management and Emissions will carry out the scientific accompaniment and evaluation of the pilot projects. One of the main tasks of the Chair of Waste Management and Emissions will be to develop mathematical models of each pilot plant based on Material Flow Analyses (MFAs), and to integrate them in a simulation programme and decision support system. Different waste management scenarios, that describe possible future developments of the waste management structure in Addis Ababa, will be simulated with the help of this programme, and their impacts on resource conservation, emissions, climate change, occupational health, and socioeconomic conditions will be assessed. "Apart from improving the quality of life of the inhabitants of the Ethiopian megacity, important insights will be gained, which will enable developing countries to reorient their waste management systems in a sustainable manner, and thereby contributing to resource conservation and climate protection“ points out Prof. Martin Kranert. It is expected that the simulation and decision support system will be applied in the future in other Megacities worldwide. Dr. Manfred Krieck from the Stuttgart Waste Management Enterprise (AWS), which supports the project, adds “we would like to contribute to the project with our practical experience in the operation of waste management systems, as well as the knowhow we have acquired through qualification of administrative personnel Stuttgart’s partner cities.”

Further Information
Dr. Ludger Eltrop
University of Stuttgart
Institute of Energy Economics and the Rational Use of Energy
+49-(0)711/685-87816, mobil: +49 (0)160/78 40 682
e-mail: le@ier.uni-stuttgart.de
www.ier.uni-stuttgart.de
Prof. Dr.-Ing. Martin Kranert
University of Stuttgart
Chair of Waste Management and Emissions
Institute of Sanitary Engineering, Water Quality and Solid Waste Management
Tel. +49 (0)711/685-65500
e-mail: martin.kranert@iswa.uni-stuttgart.de
www.iswa.uni-stuttgart.de

Ursula Zitzler | alfa
Further information:
http://www.uni-stuttgart.de
http://www.ier.uni-stuttgart.de
http://www.iswa.uni-stuttgart.de

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>