Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Highways: Environmentally Friendly Asphalts Target of New Research Program

29.05.2008
For those hoping to create a greener world, our country's millions of miles of asphalt roads may seem like an odd place to seek solutions. Yet, it's precisely because asphalt is so common that we have much to gain from making it more eco-friendly, says University of Wisconsin-Madison civil engineering professor Hussain Bahia.

As part of a new national research program called the Asphalt Research Consortium (ARC), Bahia is now using $5 million in funding to study ways of making asphalt more environmentally sustainable. UW-Madison is one of only five institutions nationwide to participate in ARC, the Federal Highway Administration's first major consortium to improve asphalt technology since the Superpave effort of the early 1990s.

More than 90 percent of U.S. roadways are paved with asphalt, which means any modifications that boost its recycled content, lengthen its life, or cut the energy needed to manufacture it could have a big impact on the environment and our pocketbooks, says Bahia. One of his first goals is to develop so-called "cold mix" asphalts for widespread introduction into the United States. Places like Africa and India have used them for decades, and research shows they can save up to seven times the energy of their hot mix counterparts.

"This is a no-brainer," says Bahia, who has studied asphalt for more than 20 years. "If any person involved in managing our infrastructure looks at the data, why would you spend more energy and money on something else? But the challenge will be to show through advanced design of these materials that the performance is equal."

Asphalt is a byproduct of oil refining; essentially, it's the black, sticky stuff that remains after fuel and lubricating oil are extracted from crude petroleum. It's too thick, however, to be laid on roads as is. That's why in places like the United States and Europe, it's first heated to temperatures as high as 300 degrees Fahrenheit, making it easy to pump and apply.

Other parts of the world have taken a very different approach. In South Africa, for example, asphalt is made workable by shearing it into fine particles, and then mixing it with water and soap-like chemicals called surfactants. The surfactants keep the asphalt in solution until it's laid, after which it hardens to form the road surface.

Studies by Canada's Office of Energy Efficiency and others have found that paving with these cold mixes (also called emulsions) saves significant amounts of energy, especially when combined with recycling efforts. These asphalts also cut emissions of carbon dioxide and other gases. But a number of issues remain, and this is where Bahia hopes his research will make a difference.

"At U.S. refineries today, there are very mature, established specifications for hot binders - our paving grade asphalts," he says. "But for emulsions, there is no clear agreement on how to define the quality. So, we have emulsions already, but we don't produce them as much because the specifications aren't as clear."

Realizing that his own knowledge was incomplete, Bahia traveled during his sabbatical last year to South Africa - a hot bed for cold mix research - and returned brimming with ideas for advancing the technology even further. Eventually he'd like to experiment with adding materials to cold mixes, such as polymers or plastics, which can make pavements quieter, safer and more durable. In fact, these "modified" asphalts are the major thrust of a new campus center he's establishing called the Modified Asphalt Research Center (MARC).

But before embarking on those studies, Bahia first wants to develop quality control tests and standards that will encourage U.S. engineers, chemists and road builders to adopt cold mix asphalts, or at least give them a try. This means first defining the critical ways in which these asphalts fail, and designing systems for detecting the failures.

"We can then determine the chemistry or physics that will give us a larger margin of safety from these failures," says Bahia. The final step will involve simulating various climate conditions in the laboratory to see how failure limits change with freezing cold or blazing heat.

But if green asphalts hold such promise, why haven't these standards been worked out here before? In short, we haven't had to, Bahia says. Until now, we've gotten away with using more expensive and energy consuming hot mixes because of our wealth of resources. Meanwhile, countries such as South Africa and India haven't had the same resources at their disposal.

"In South Africa, they initially decided to go with the low-energy approach because it can save a lot of money," says Bahia. "Then as their economy grew, they had to build high-performance roads. But instead of switching to hot mixes, they improved their knowledge to build better cold mixes."

Now, as concerns about energy and climate change continue to mount, these asphalts are starting to spread beyond the developing world. Paris, France, recently mandated that all new roads be built with lower temperature mixes for environmental reasons. And in North America, there have been many trials with warm mixes that are a step between hot and cold. It gives Bahia hope that the United States will eventually adopt the technology, too.

"Why are we spending so much money on something else? I think there's a very good reason: lack of sufficient knowledge," he says. "And our job as a university is to provide the knowledge that will hopefully one day get us there."

For more on the MARC program, visit http://uwmarc.org/

Madeline Fisher | newswise
Further information:
http://www.wisc.edu
http://uwmarc.org/

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>