Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Highways: Environmentally Friendly Asphalts Target of New Research Program

29.05.2008
For those hoping to create a greener world, our country's millions of miles of asphalt roads may seem like an odd place to seek solutions. Yet, it's precisely because asphalt is so common that we have much to gain from making it more eco-friendly, says University of Wisconsin-Madison civil engineering professor Hussain Bahia.

As part of a new national research program called the Asphalt Research Consortium (ARC), Bahia is now using $5 million in funding to study ways of making asphalt more environmentally sustainable. UW-Madison is one of only five institutions nationwide to participate in ARC, the Federal Highway Administration's first major consortium to improve asphalt technology since the Superpave effort of the early 1990s.

More than 90 percent of U.S. roadways are paved with asphalt, which means any modifications that boost its recycled content, lengthen its life, or cut the energy needed to manufacture it could have a big impact on the environment and our pocketbooks, says Bahia. One of his first goals is to develop so-called "cold mix" asphalts for widespread introduction into the United States. Places like Africa and India have used them for decades, and research shows they can save up to seven times the energy of their hot mix counterparts.

"This is a no-brainer," says Bahia, who has studied asphalt for more than 20 years. "If any person involved in managing our infrastructure looks at the data, why would you spend more energy and money on something else? But the challenge will be to show through advanced design of these materials that the performance is equal."

Asphalt is a byproduct of oil refining; essentially, it's the black, sticky stuff that remains after fuel and lubricating oil are extracted from crude petroleum. It's too thick, however, to be laid on roads as is. That's why in places like the United States and Europe, it's first heated to temperatures as high as 300 degrees Fahrenheit, making it easy to pump and apply.

Other parts of the world have taken a very different approach. In South Africa, for example, asphalt is made workable by shearing it into fine particles, and then mixing it with water and soap-like chemicals called surfactants. The surfactants keep the asphalt in solution until it's laid, after which it hardens to form the road surface.

Studies by Canada's Office of Energy Efficiency and others have found that paving with these cold mixes (also called emulsions) saves significant amounts of energy, especially when combined with recycling efforts. These asphalts also cut emissions of carbon dioxide and other gases. But a number of issues remain, and this is where Bahia hopes his research will make a difference.

"At U.S. refineries today, there are very mature, established specifications for hot binders - our paving grade asphalts," he says. "But for emulsions, there is no clear agreement on how to define the quality. So, we have emulsions already, but we don't produce them as much because the specifications aren't as clear."

Realizing that his own knowledge was incomplete, Bahia traveled during his sabbatical last year to South Africa - a hot bed for cold mix research - and returned brimming with ideas for advancing the technology even further. Eventually he'd like to experiment with adding materials to cold mixes, such as polymers or plastics, which can make pavements quieter, safer and more durable. In fact, these "modified" asphalts are the major thrust of a new campus center he's establishing called the Modified Asphalt Research Center (MARC).

But before embarking on those studies, Bahia first wants to develop quality control tests and standards that will encourage U.S. engineers, chemists and road builders to adopt cold mix asphalts, or at least give them a try. This means first defining the critical ways in which these asphalts fail, and designing systems for detecting the failures.

"We can then determine the chemistry or physics that will give us a larger margin of safety from these failures," says Bahia. The final step will involve simulating various climate conditions in the laboratory to see how failure limits change with freezing cold or blazing heat.

But if green asphalts hold such promise, why haven't these standards been worked out here before? In short, we haven't had to, Bahia says. Until now, we've gotten away with using more expensive and energy consuming hot mixes because of our wealth of resources. Meanwhile, countries such as South Africa and India haven't had the same resources at their disposal.

"In South Africa, they initially decided to go with the low-energy approach because it can save a lot of money," says Bahia. "Then as their economy grew, they had to build high-performance roads. But instead of switching to hot mixes, they improved their knowledge to build better cold mixes."

Now, as concerns about energy and climate change continue to mount, these asphalts are starting to spread beyond the developing world. Paris, France, recently mandated that all new roads be built with lower temperature mixes for environmental reasons. And in North America, there have been many trials with warm mixes that are a step between hot and cold. It gives Bahia hope that the United States will eventually adopt the technology, too.

"Why are we spending so much money on something else? I think there's a very good reason: lack of sufficient knowledge," he says. "And our job as a university is to provide the knowledge that will hopefully one day get us there."

For more on the MARC program, visit http://uwmarc.org/

Madeline Fisher | newswise
Further information:
http://www.wisc.edu
http://uwmarc.org/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>