Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Fungus to Improve Corn-to-ethanol Process

29.05.2008
Growing a fungus in some of the leftovers from ethanol production can save energy, recycle more water and improve the livestock feed that’s a co-product of fuel production, according to a team of researchers from Iowa State University and the University of Hawai’i.

“The process could change ethanol production in dry-grind plants so much that energy costs can be reduced by as much as one-third,” said Hans van Leeuwen, an Iowa State professor of civil, construction and environmental engineering and the leader of the research project.

Van Leeuwen and the other researchers developing the technology – Anthony L. Pometto III, a professor of food science and human nutrition; Mary Rasmussen, a graduate student in environmental engineering and biorenewable resources and technology; and Samir Khanal, a former Iowa State research assistant professor who’s now an assistant professor of molecular biosciences and bioengineering at the University of Hawai‘i at Mânoa – recently won the 2008 Grand Prize for University Research from the American Academy of Environmental Engineers for the project.

“Those chosen for prizes by an independent panel of distinguished experts address the broad range of modern challenges inherent in providing life-nurturing services for humans and protection of the environment,” according to a statement from the academy. “… Their innovations and performance illustrate the essential role of environmental engineers in providing a healthy planet.”

The Iowa State project is focused on using fungi to clean up and improve the dry-grind ethanol production process. That process grinds corn kernels and adds water and enzymes. The enzymes break the starches into sugars. The sugars are fermented with yeasts to produce ethanol.

The fuel is recovered by distillation, but there are about six gallons of leftovers for every gallon of fuel that’s produced. Those leftovers, known as stillage, contain solids and other organic material. Most of the solids are removed by centrifugation and dried into distillers dried grains that are sold as livestock feed, primarily for cattle.

The remaining liquid, known as thin stillage, still contains some solids, a variety of organic compounds from corn and fermentation as well as enzymes. Because the compounds and solids can interfere with ethanol production, only about 50 percent of thin stillage can be recycled back into ethanol production. The rest is evaporated and blended with distillers dried grains to produce distillers dried grains with solubles.

The researchers added a fungus, Rhizopus microsporus, to the thin stillage and found it would feed and grow. The fungus removes about 80 percent of the organic material and all of the solids in the thin stillage, allowing the water and enzymes in the thin stillage to be recycled back into production.

The fungus can also be harvested. It’s a food-grade organism that’s rich in protein, certain essential amino acids and other nutrients. It can be dried and sold as a livestock feed supplement. Or it can be blended with distillers dried grains to boost its value as a livestock feed and make it more suitable for feeding hogs and chickens.

Van Leeuwen said all of that can save United States ethanol producers a lot of energy and money at current production levels:

• Eliminating the need to evaporate thin stillage would save ethanol plants up to $800 million a year in energy costs.

• Allowing more water recycling would reduce the industry’s water consumption by as much as 10 billion gallons per year. And it allows producers to recycle enzymes in the thin stillage, saving about $60 million per year.

• Adding value and nutrients to the livestock feed produced by ethanol plants would grow the market for that feed by about $400 million per year.

• And the researchers’ fungal process would improve the energy balance of ethanol production by reducing energy inputs so there is more of an energy gain.

Van Leeuwen estimated it would cost $11 million to start using the process in an ethanol plant that produces 100 million gallons of fuel per year. But, he said the cost savings at such a plant could pay off that investment in about six months.

The Iowa State research project is supported by grants of $78,806 from the Grow Iowa Values Fund, a state economic development program, and $80,000 from the U.S. Department of Agriculture through the Iowa Biotechnology Byproducts Consortium.

The researchers have filed for a patent on the technology and are looking for investors to commercialize the invention. And while the process needs to be proven at larger scales, there are high hopes it can do a lot to improve the efficiency of ethanol production.

“We will be saving ethanol producers money and energy,” Pometto said. “That’s the bottom line.”

Mike Krapfl | newswise
Further information:
http://www.iastate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>