Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Fungus to Improve Corn-to-ethanol Process

29.05.2008
Growing a fungus in some of the leftovers from ethanol production can save energy, recycle more water and improve the livestock feed that’s a co-product of fuel production, according to a team of researchers from Iowa State University and the University of Hawai’i.

“The process could change ethanol production in dry-grind plants so much that energy costs can be reduced by as much as one-third,” said Hans van Leeuwen, an Iowa State professor of civil, construction and environmental engineering and the leader of the research project.

Van Leeuwen and the other researchers developing the technology – Anthony L. Pometto III, a professor of food science and human nutrition; Mary Rasmussen, a graduate student in environmental engineering and biorenewable resources and technology; and Samir Khanal, a former Iowa State research assistant professor who’s now an assistant professor of molecular biosciences and bioengineering at the University of Hawai‘i at Mânoa – recently won the 2008 Grand Prize for University Research from the American Academy of Environmental Engineers for the project.

“Those chosen for prizes by an independent panel of distinguished experts address the broad range of modern challenges inherent in providing life-nurturing services for humans and protection of the environment,” according to a statement from the academy. “… Their innovations and performance illustrate the essential role of environmental engineers in providing a healthy planet.”

The Iowa State project is focused on using fungi to clean up and improve the dry-grind ethanol production process. That process grinds corn kernels and adds water and enzymes. The enzymes break the starches into sugars. The sugars are fermented with yeasts to produce ethanol.

The fuel is recovered by distillation, but there are about six gallons of leftovers for every gallon of fuel that’s produced. Those leftovers, known as stillage, contain solids and other organic material. Most of the solids are removed by centrifugation and dried into distillers dried grains that are sold as livestock feed, primarily for cattle.

The remaining liquid, known as thin stillage, still contains some solids, a variety of organic compounds from corn and fermentation as well as enzymes. Because the compounds and solids can interfere with ethanol production, only about 50 percent of thin stillage can be recycled back into ethanol production. The rest is evaporated and blended with distillers dried grains to produce distillers dried grains with solubles.

The researchers added a fungus, Rhizopus microsporus, to the thin stillage and found it would feed and grow. The fungus removes about 80 percent of the organic material and all of the solids in the thin stillage, allowing the water and enzymes in the thin stillage to be recycled back into production.

The fungus can also be harvested. It’s a food-grade organism that’s rich in protein, certain essential amino acids and other nutrients. It can be dried and sold as a livestock feed supplement. Or it can be blended with distillers dried grains to boost its value as a livestock feed and make it more suitable for feeding hogs and chickens.

Van Leeuwen said all of that can save United States ethanol producers a lot of energy and money at current production levels:

• Eliminating the need to evaporate thin stillage would save ethanol plants up to $800 million a year in energy costs.

• Allowing more water recycling would reduce the industry’s water consumption by as much as 10 billion gallons per year. And it allows producers to recycle enzymes in the thin stillage, saving about $60 million per year.

• Adding value and nutrients to the livestock feed produced by ethanol plants would grow the market for that feed by about $400 million per year.

• And the researchers’ fungal process would improve the energy balance of ethanol production by reducing energy inputs so there is more of an energy gain.

Van Leeuwen estimated it would cost $11 million to start using the process in an ethanol plant that produces 100 million gallons of fuel per year. But, he said the cost savings at such a plant could pay off that investment in about six months.

The Iowa State research project is supported by grants of $78,806 from the Grow Iowa Values Fund, a state economic development program, and $80,000 from the U.S. Department of Agriculture through the Iowa Biotechnology Byproducts Consortium.

The researchers have filed for a patent on the technology and are looking for investors to commercialize the invention. And while the process needs to be proven at larger scales, there are high hopes it can do a lot to improve the efficiency of ethanol production.

“We will be saving ethanol producers money and energy,” Pometto said. “That’s the bottom line.”

Mike Krapfl | newswise
Further information:
http://www.iastate.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>