Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epoca: ocean acidification and its impact on ecosystems

27.05.2008
Emissions of carbon dioxide (CO2) through human activities have a well known impact on the Earth's climate. What is not so well known is that the absorption of this CO2 by the oceans is causing inexorable acidification of sea water.

But what impact is this phenomenon having on marine organisms and ecosystems? This is a question to which researchers have few answers as yet. That is why the European Union has recently given its support to EPOCA, the European Project on Ocean Acidification, which will be launched in Nice (France) on 10 June 2008.

EPOCA's goal is to document ocean acidification, investigate its impact on biological processes, predict its consequences over the next 100 years, and advise policy-makers on potential thresholds or tipping points that should not be exceeded. The project is coordinated by Jean-Pierre Gattuso, a CNRS researcher at the Oceanography Laboratory at Villefranche-sur-mer (1), and brings together a consortium of 27 partners, including CNRS and the French Atomic Energy Agency (CEA), from 9 countries. Many of the leading oceanographic institutions across Europe and more than 100 permanent scientists are involved. The budget is EUR16.5 million over 4 years, including EUR6.5 million from the European Commission. *

Over 71% of the Earth's surface is covered by the oceans, which are home to an incredibly diverse flora and fauna. They play a key role in regulating the climate and levels of carbon dioxide (CO2), one of the main greenhouse gases. Over the last 200 years (since the beginning of the industrial revolution), the oceans have absorbed about one third of the carbon dioxide produced by human activities, a total of 120 billion tons. Without this absorption, the amount of CO2 present in the atmosphere and its effects on the climate would undoubtedly be far greater.

In fact, over 25 million tons of CO2 dissolve in seawater every day. However, the oceans do not escape unscathed. When CO2 dissolves in sea water, it causes the formation of carbonic acid, which leads to a fall in pH (the pH scale is used to measure acidity (2)). This change is called "ocean acidification" and is happening at a rate that has not been experienced probably for the last 20 million years.

The effects of this huge input of CO2 into the oceans only began to be studied in the late 1990s (3) and are still poorly understood. One of the most likely consequences will be slower growth of organisms with calcareous skeletons, such as corals, mollusks, algae, etc (4). Obtaining more information about ocean acidification is a major environmental priority because of the threat it poses to certain species and ecosystems.

EPOCA should help us to understand the effects of the acidification of sea water as well as its impact on marine organisms and ecosystems. More specifically, the project has four goals:

* document the changes in ocean chemistry and biogeography across space and time. Paleo-reconstruction methods will be used on several natural/biological archives, including foraminifera and deep-sea corals, to determine past variability in ocean chemistry and to tie these to present-day chemical and biological observations.

* determine the sensitivity of marine organisms, communities and ecosystems to ocean acidification. Molecular to biochemical, physiological and ecological approaches will be combined with laboratory and field-based perturbation experiments to quantify biological responses to ocean acidification, assess the potential for adaptation, and determine the consequences for biogeochemical cycling. Laboratory experiments will focus on key organisms selected on the basis of their ecological, biogeochemical or socio-economic importance. Field studies will be carried out in systems (areas/regions) deemed most sensitive to ocean acidification.

* integrate results on the impact of ocean acidification on marine ecosystems in biogeochemical, sediment, and coupled ocean-climate models to better understand and predict the responses of the Earth system to ocean acidification. Special attention will be paid to the potential feedbacks of the physiological changes in the carbon, nitrogen, sulfur and iron cycles * assess uncertainties, risks and thresholds ("tipping points") related to ocean acidification at scales ranging from sub-cellular to ecosystem and local to global. It will also assess the decrease in CO2 emissions required to avoid these thresholds and describe the change and the subsequent risk to the marine environment and Earth system, should these emissions be exceeded.

(1) LOV, a component of the Observatoire océanologique de Villefranche-sur-Mer, CNRS / Université Pierre et Marie Curie-Paris VI

(2) The lower the pH of a solution, the higher is its acidity.

(3) This area of research has been receiving backing at national level for several years through INSU's project-based actions.

(4) See the press release "Moules et huîtres menacées par l'acidification des océans" ('Mussels and oysters endangered by the acidification of the oceans')

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr
http://www2.cnrs.fr/en/821
http://epoca-project.eu/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>