Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Epoca: ocean acidification and its impact on ecosystems

Emissions of carbon dioxide (CO2) through human activities have a well known impact on the Earth's climate. What is not so well known is that the absorption of this CO2 by the oceans is causing inexorable acidification of sea water.

But what impact is this phenomenon having on marine organisms and ecosystems? This is a question to which researchers have few answers as yet. That is why the European Union has recently given its support to EPOCA, the European Project on Ocean Acidification, which will be launched in Nice (France) on 10 June 2008.

EPOCA's goal is to document ocean acidification, investigate its impact on biological processes, predict its consequences over the next 100 years, and advise policy-makers on potential thresholds or tipping points that should not be exceeded. The project is coordinated by Jean-Pierre Gattuso, a CNRS researcher at the Oceanography Laboratory at Villefranche-sur-mer (1), and brings together a consortium of 27 partners, including CNRS and the French Atomic Energy Agency (CEA), from 9 countries. Many of the leading oceanographic institutions across Europe and more than 100 permanent scientists are involved. The budget is EUR16.5 million over 4 years, including EUR6.5 million from the European Commission. *

Over 71% of the Earth's surface is covered by the oceans, which are home to an incredibly diverse flora and fauna. They play a key role in regulating the climate and levels of carbon dioxide (CO2), one of the main greenhouse gases. Over the last 200 years (since the beginning of the industrial revolution), the oceans have absorbed about one third of the carbon dioxide produced by human activities, a total of 120 billion tons. Without this absorption, the amount of CO2 present in the atmosphere and its effects on the climate would undoubtedly be far greater.

In fact, over 25 million tons of CO2 dissolve in seawater every day. However, the oceans do not escape unscathed. When CO2 dissolves in sea water, it causes the formation of carbonic acid, which leads to a fall in pH (the pH scale is used to measure acidity (2)). This change is called "ocean acidification" and is happening at a rate that has not been experienced probably for the last 20 million years.

The effects of this huge input of CO2 into the oceans only began to be studied in the late 1990s (3) and are still poorly understood. One of the most likely consequences will be slower growth of organisms with calcareous skeletons, such as corals, mollusks, algae, etc (4). Obtaining more information about ocean acidification is a major environmental priority because of the threat it poses to certain species and ecosystems.

EPOCA should help us to understand the effects of the acidification of sea water as well as its impact on marine organisms and ecosystems. More specifically, the project has four goals:

* document the changes in ocean chemistry and biogeography across space and time. Paleo-reconstruction methods will be used on several natural/biological archives, including foraminifera and deep-sea corals, to determine past variability in ocean chemistry and to tie these to present-day chemical and biological observations.

* determine the sensitivity of marine organisms, communities and ecosystems to ocean acidification. Molecular to biochemical, physiological and ecological approaches will be combined with laboratory and field-based perturbation experiments to quantify biological responses to ocean acidification, assess the potential for adaptation, and determine the consequences for biogeochemical cycling. Laboratory experiments will focus on key organisms selected on the basis of their ecological, biogeochemical or socio-economic importance. Field studies will be carried out in systems (areas/regions) deemed most sensitive to ocean acidification.

* integrate results on the impact of ocean acidification on marine ecosystems in biogeochemical, sediment, and coupled ocean-climate models to better understand and predict the responses of the Earth system to ocean acidification. Special attention will be paid to the potential feedbacks of the physiological changes in the carbon, nitrogen, sulfur and iron cycles * assess uncertainties, risks and thresholds ("tipping points") related to ocean acidification at scales ranging from sub-cellular to ecosystem and local to global. It will also assess the decrease in CO2 emissions required to avoid these thresholds and describe the change and the subsequent risk to the marine environment and Earth system, should these emissions be exceeded.

(1) LOV, a component of the Observatoire océanologique de Villefranche-sur-Mer, CNRS / Université Pierre et Marie Curie-Paris VI

(2) The lower the pH of a solution, the higher is its acidity.

(3) This area of research has been receiving backing at national level for several years through INSU's project-based actions.

(4) See the press release "Moules et huîtres menacées par l'acidification des océans" ('Mussels and oysters endangered by the acidification of the oceans')

Julien Guillaume | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>