Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPOCA: Ocean Acidification and its Consequences on Ecosystems

26.05.2008
Emissions of carbon dioxide (CO2) through human activities have a well-known impact on the Earth's climate. Its other, less well-known, impact is "ocean acidification", with uncertain consequences on marine organisms and ecosystems.

The European Project on Ocean Acidification (EPOCA) will be launched on 10 June 2008. Its goal is to document ocean acidification, investigate its impact on biological processes, predict its consequences over the next 100 years, and advise policy-makers on potential thresholds or tipping points that should not be exceeded.

The World's oceans cover over 70% of the planet's surface, contribute half of its primary production and contain an enormous diversity of life. Thus it is not surprising that they provide invaluable resources to human society. They also play a vital role in Earth's life support system due to their impact on climate and global biogeochemical cycles and due to their capacity to absorb atmospheric carbon dioxide (CO2).

The oceans currently absorb half of the CO2 produced by burning fossil fuels. Put simply, climate change would be far worse if it was not for the oceans. However, there is a cost to the oceans. When carbon dioxide dissolves in seawater, it forms carbonic acid. As more CO2 is taken up by the oceans surface, the pH (a measure of acidity, the lower the pH the greater the acidity) decreases, moving towards a more acidic state. This change is called "ocean acidification" and is happening at a rate that has not been experienced for at least 400,000 years and probably for the last 20 million years.

The overall goal of the European Project on Ocean Acidification (EPOCA) is to fill the numerous gaps in our understanding of the effects and implications of ocean acidification.

- EPOCA aims to document the changes in ocean chemistry and biogeography across space and time. Paleo-reconstruction methods will be used on several biological archives, including foraminifera and deep-sea corals, to determine past variability in ocean chemistry and to tie these to present-day chemical and biological observations.

- EPOCA will determine the sensitivity of marine organisms, communities and ecosystems to ocean acidification. Molecular to biochemical, physiological and ecological approaches will be combined with laboratory and field-based perturbation experiments to quantify biological responses to ocean acidification, assess the potential for adaptation, and determine the consequences for biogeochemical cycling. Laboratory experiments will focus on key organisms selected on the basis of their ecological, biogeochemical or socio-economic importance. Field studies will be carried out in regions of the ocean deemed most sensitive to ocean acidification.

- Insights into the impacts of ocean acidification will be integrated in biogeochemical, sediment and coupled ocean-climate models to better understand and predict the responses of the Earth system to ocean acidification. Special attention will be paid to the potential feedbacks of the physiological changes in the carbon, nitrogen, sulfur and iron cycles.

- EPOCA will assess uncertainties, risks and thresholds ("tipping points") related to ocean acidification at scales ranging from sub-cellular to ecosystem and local to global. It will also assess pathways of CO2 emissions required to avoid these thresholds and describe the change and the subsequent risk to the marine environment and Earth system, should these emissions be exceeded.

Led by the Centre National de la Recherche Scientifique (CNRS), the EU Framework 7 Collaborative Project EPOCA is run by a consortium of 27 partners across 9 countries involving many of the leading oceanographic institutions across Europe and more than 100 permanent scientists. The budget of this 4 year project is 16.5 M€ with a contribution from the European Commission of 6.5 M€.

For more information and a full list of all EPOCA partners visit: http://epoca-project.eu

Kickoff meeting:
EPOCA will officially be launched during a kickoff meeting in Nice (France), 10-13 June 2008.
Further institutional contacts in Germany:
GKSS Research Centre, Institute for Coastal Research
Dr Markus Schartau
Phone: +49 4152 87 1540
email: markus.schartau@gkss.de
Max Planck Institute for Meteorology
Dr Ernst Maier-Reimer
Phone: +49 40 41173 233
email: ernst.maier-reimer@zmaw.de
The Alfred Wegener Institute (AWI) conducts research in the Arctic, Antarctic and in oceans of temperate and high latitudes. The AWI coordinates polar research in Germany, and provides important infrastructure, such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic for international science organisations. The Alfred Wegener Institute is one of 15 research centres of the 'Helmholtz-Gemeinschaft' (Helmholtz Association), the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>