EPOCA: Ocean Acidification and its Consequences on Ecosystems

The European Project on Ocean Acidification (EPOCA) will be launched on 10 June 2008. Its goal is to document ocean acidification, investigate its impact on biological processes, predict its consequences over the next 100 years, and advise policy-makers on potential thresholds or tipping points that should not be exceeded.

The World's oceans cover over 70% of the planet's surface, contribute half of its primary production and contain an enormous diversity of life. Thus it is not surprising that they provide invaluable resources to human society. They also play a vital role in Earth's life support system due to their impact on climate and global biogeochemical cycles and due to their capacity to absorb atmospheric carbon dioxide (CO2).

The oceans currently absorb half of the CO2 produced by burning fossil fuels. Put simply, climate change would be far worse if it was not for the oceans. However, there is a cost to the oceans. When carbon dioxide dissolves in seawater, it forms carbonic acid. As more CO2 is taken up by the oceans surface, the pH (a measure of acidity, the lower the pH the greater the acidity) decreases, moving towards a more acidic state. This change is called “ocean acidification” and is happening at a rate that has not been experienced for at least 400,000 years and probably for the last 20 million years.

The overall goal of the European Project on Ocean Acidification (EPOCA) is to fill the numerous gaps in our understanding of the effects and implications of ocean acidification.

– EPOCA aims to document the changes in ocean chemistry and biogeography across space and time. Paleo-reconstruction methods will be used on several biological archives, including foraminifera and deep-sea corals, to determine past variability in ocean chemistry and to tie these to present-day chemical and biological observations.

– EPOCA will determine the sensitivity of marine organisms, communities and ecosystems to ocean acidification. Molecular to biochemical, physiological and ecological approaches will be combined with laboratory and field-based perturbation experiments to quantify biological responses to ocean acidification, assess the potential for adaptation, and determine the consequences for biogeochemical cycling. Laboratory experiments will focus on key organisms selected on the basis of their ecological, biogeochemical or socio-economic importance. Field studies will be carried out in regions of the ocean deemed most sensitive to ocean acidification.

– Insights into the impacts of ocean acidification will be integrated in biogeochemical, sediment and coupled ocean-climate models to better understand and predict the responses of the Earth system to ocean acidification. Special attention will be paid to the potential feedbacks of the physiological changes in the carbon, nitrogen, sulfur and iron cycles.

– EPOCA will assess uncertainties, risks and thresholds (“tipping points”) related to ocean acidification at scales ranging from sub-cellular to ecosystem and local to global. It will also assess pathways of CO2 emissions required to avoid these thresholds and describe the change and the subsequent risk to the marine environment and Earth system, should these emissions be exceeded.

Led by the Centre National de la Recherche Scientifique (CNRS), the EU Framework 7 Collaborative Project EPOCA is run by a consortium of 27 partners across 9 countries involving many of the leading oceanographic institutions across Europe and more than 100 permanent scientists. The budget of this 4 year project is 16.5 M€ with a contribution from the European Commission of 6.5 M€.

For more information and a full list of all EPOCA partners visit: http://epoca-project.eu

Kickoff meeting:
EPOCA will officially be launched during a kickoff meeting in Nice (France), 10-13 June 2008.
Further institutional contacts in Germany:
GKSS Research Centre, Institute for Coastal Research
Dr Markus Schartau
Phone: +49 4152 87 1540
email: markus.schartau@gkss.de
Max Planck Institute for Meteorology
Dr Ernst Maier-Reimer
Phone: +49 40 41173 233
email: ernst.maier-reimer@zmaw.de
The Alfred Wegener Institute (AWI) conducts research in the Arctic, Antarctic and in oceans of temperate and high latitudes. The AWI coordinates polar research in Germany, and provides important infrastructure, such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic for international science organisations. The Alfred Wegener Institute is one of 15 research centres of the 'Helmholtz-Gemeinschaft' (Helmholtz Association), the largest scientific organisation in Germany.

Media Contact

Margarete Pauls idw

More Information:

http://www.awi.de/

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors