Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tidal cycle could amplify global-warming related sea-level rises

23.05.2008
The results of several scientific studies conducted since 1993 have confirmed a 3.2 cm sea level rise. Although this variation might appear negligible, it has in fact turned out to be twice as high as that recorded over the whole of the previous century.

This increase in sea level is a consequence of global warming. When sea temperature rises, the sea expands and therefore occupies a greater volume. This phenomenon is now well known to scientists, but other processes that have received less research attention, such as the tidal cycle, seem to contribute at global scale just as much to changes in sea level.

A team coordinated by IRD scientists compared a series of satellite images collected at regular intervals over 20 years to measure the contribution of the bidecennial tidal cycle on global sea-level variations. In the first phase of the study, the scientists focused on the 350 km of French Guianan coastline found to be highly suitable for observation of the phenomenon.

This is a virgin region completely unaffected by any human activity and bears the certainty that the slightest change observed in the geomorphology of that coast is natural in origin. The geographical zone is moreover covered by an ecosystem of mangroves whose coastal fringe reacts almost immediately to fluctuations in marine conditions.

The study used 60 images taken by Spot, Landsat, ASAR and JERS satellites to follow-up the changes and developments of the mangrove areas over the 20-year period from 1986 to 2006, in other words a complete bidecennial tidal cycle. In parallel and over the same period, altimetric satellites (Ssalto data produced by Aviso) gave a measure of the change in the sea level. By comparing and contrasting the data resulting from these two types of satellite device, the scientists arrived at a measure of the process’s contribution of the physical features of the coastline.

Their analysis indicated that a 3% increase in tidal amplitude on the French Guiana coast, and along the whole of the 1500 km stretch of coastline of the Guiana Plateau, induced more than 100 m of coastal erosion and shoreline retreat during the first ten years of the cycle. A subsequent 3% fall in the course of the second half of the cycle then allowed regeneration of the mangrove colonies, a sure sign of coastal advance.

The results also suggested that 75% of the rise of the open sea level recorded for this coastal zone during the first ten years of the cycle was attributable to the tidal cycle.

On the Guiana Plateau coast, the tidal range –the difference between the high-tide and low-tide water levels– is quite low as it settles at around two metres on average. In this context, it is predicted that between 2006 and 2015 the rise in open sea level, directly linked to the bidecennial cycle, will not exceed a few centimetres. It should therefore be about the same order of magnitude as the sea level increase linked to thermal expansion of the ocean.

Extrapolation of the results obtained for the Guiana Plateau coast led to an estimate of the impact of the tidal cycle on the sea level rise at global scale (see Map).

Coastal zones exist where the tidal range is much more spectacular in size than on the Guianan coasts. At Mont Saint-Michel in France, for example, it can be more than 12 m. And in Ungava Bay, on the East coast of Canada, where the world’s largest tidal amplitudes are recorded, it reaches as high as 20 m. In these regions, from the present day (2008) to 2015, the bidecennial tidal cycle could cause a rise in the open sea level of more than 50 cm, or 25 times greater than the rise linked to global-warming induced oceanic thermal expansion. Over the period 2015-2025, the second phase of this cycle is predicted to contribute to a regular fall in the open sea level.

At planetary scale, it could thus partly compensate for the effects of the global-warming related rise in the sea water. Thanks to a better awareness of the cyclic nature of the tides, probably one of the most predictable cyclic systems in the world, this research should, over the next 20 years, lead to a better understanding of coastal geomorphology and in particular the processes of coastal erosion.

1. This work was conducted jointly with the University of Dunkirk, the Institut National de Recherche Agronomique (INRA) and the Virginia Institute of Marine Science (United States)

2. This is a tidal cycle established highly precisely at 18.6 years during which the average level of open seas rises by 3% per year for the first half of this cycle then falls by 3% over the 9 years that follow.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas295.pf

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>