Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tidal cycle could amplify global-warming related sea-level rises

23.05.2008
The results of several scientific studies conducted since 1993 have confirmed a 3.2 cm sea level rise. Although this variation might appear negligible, it has in fact turned out to be twice as high as that recorded over the whole of the previous century.

This increase in sea level is a consequence of global warming. When sea temperature rises, the sea expands and therefore occupies a greater volume. This phenomenon is now well known to scientists, but other processes that have received less research attention, such as the tidal cycle, seem to contribute at global scale just as much to changes in sea level.

A team coordinated by IRD scientists compared a series of satellite images collected at regular intervals over 20 years to measure the contribution of the bidecennial tidal cycle on global sea-level variations. In the first phase of the study, the scientists focused on the 350 km of French Guianan coastline found to be highly suitable for observation of the phenomenon.

This is a virgin region completely unaffected by any human activity and bears the certainty that the slightest change observed in the geomorphology of that coast is natural in origin. The geographical zone is moreover covered by an ecosystem of mangroves whose coastal fringe reacts almost immediately to fluctuations in marine conditions.

The study used 60 images taken by Spot, Landsat, ASAR and JERS satellites to follow-up the changes and developments of the mangrove areas over the 20-year period from 1986 to 2006, in other words a complete bidecennial tidal cycle. In parallel and over the same period, altimetric satellites (Ssalto data produced by Aviso) gave a measure of the change in the sea level. By comparing and contrasting the data resulting from these two types of satellite device, the scientists arrived at a measure of the process’s contribution of the physical features of the coastline.

Their analysis indicated that a 3% increase in tidal amplitude on the French Guiana coast, and along the whole of the 1500 km stretch of coastline of the Guiana Plateau, induced more than 100 m of coastal erosion and shoreline retreat during the first ten years of the cycle. A subsequent 3% fall in the course of the second half of the cycle then allowed regeneration of the mangrove colonies, a sure sign of coastal advance.

The results also suggested that 75% of the rise of the open sea level recorded for this coastal zone during the first ten years of the cycle was attributable to the tidal cycle.

On the Guiana Plateau coast, the tidal range –the difference between the high-tide and low-tide water levels– is quite low as it settles at around two metres on average. In this context, it is predicted that between 2006 and 2015 the rise in open sea level, directly linked to the bidecennial cycle, will not exceed a few centimetres. It should therefore be about the same order of magnitude as the sea level increase linked to thermal expansion of the ocean.

Extrapolation of the results obtained for the Guiana Plateau coast led to an estimate of the impact of the tidal cycle on the sea level rise at global scale (see Map).

Coastal zones exist where the tidal range is much more spectacular in size than on the Guianan coasts. At Mont Saint-Michel in France, for example, it can be more than 12 m. And in Ungava Bay, on the East coast of Canada, where the world’s largest tidal amplitudes are recorded, it reaches as high as 20 m. In these regions, from the present day (2008) to 2015, the bidecennial tidal cycle could cause a rise in the open sea level of more than 50 cm, or 25 times greater than the rise linked to global-warming induced oceanic thermal expansion. Over the period 2015-2025, the second phase of this cycle is predicted to contribute to a regular fall in the open sea level.

At planetary scale, it could thus partly compensate for the effects of the global-warming related rise in the sea water. Thanks to a better awareness of the cyclic nature of the tides, probably one of the most predictable cyclic systems in the world, this research should, over the next 20 years, lead to a better understanding of coastal geomorphology and in particular the processes of coastal erosion.

1. This work was conducted jointly with the University of Dunkirk, the Institut National de Recherche Agronomique (INRA) and the Virginia Institute of Marine Science (United States)

2. This is a tidal cycle established highly precisely at 18.6 years during which the average level of open seas rises by 3% per year for the first half of this cycle then falls by 3% over the 9 years that follow.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas295.pf

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>