Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EARLINET, European research for climatic change analysis

21.05.2008
- Experts from 12 European countries collaborate in an observation network that allows a better knowledge of particles (aerosol) present in the continent’s atmosphere (industrial, urban concentrations, Saharan dust, volcanic, forest fires, etc.).

- They have prepared a wide database on atmospheric aerosol’s vertical structure and its temporal development, essential to carry out a climatologic study of atmospheric aerosol, as well as to validate the new devices installed in artificial satellites.

- This is an example of base science generator of indispensable knowledge for the advance of atmospheric science and climatic change prevention.

The prediction of future climate is, undoubtedly, one of the main challenges of our time, marked by the concern about climatic change and its effects, such as drought and natural disasters, poles thaw, rise of the sea level, diseases, etc. Climatic change poses different scientific challenges to researchers from all over the world, which must be tackled with new ideas, reliable data and advanced instruments.

Science must provide conclusive answers, for example, about the climatic effects of human pollution, the deforestation of wide regions of the globe or forest fires. Rigorous, fast and conclusive answers are not possible when scientific challenges have planetary dimensions.

As regards atmospheric physics’s knowedge ans its possible effects on climatic change, research groups from all Europe have developed the project EARLINET-ASOS (European Aerosol Research Lidar Network: Advanced Sustainable Observation System). 25 laboratories, located in 12 European countries, carry out weekly measures simultaneously to obtain indispensable data for the carrying out of climatic studies: the analysis of the presence in the atmosphere of aerosol’s particles and the determination of its origin.

One of these stations is located in Granada (CEAMA - Andalusian Centre for the Environment), directed by Prof Lucas Alados Arboledas.

“Atmospheric aerosol represents one of the main uncertainties in the estimation of the radiative forcing of climate and, therefore, for the prediction of climatic change –says Alados-. Aerosols disturb solar radiation in the atmosphere and influence the properties of clouds and rainfall in a way we are still ignorant of”.

A few years ago, research works were focused on getting to know the distribution of aerosol particles on a worldwide scale, as well as the properties of the different types of aerosol. The advances were very relevant, but measurements from land, planes or satellite could only measure the quantity, but not its vertical distribution at different heights, a key question, for example, to get to know its effect on climate, which is generally opposite due to the increase of greenhouse gases. This is, whereas global warming is associated with greenhouse gases increase, atmospheric aerosol can contribute to a cooling of the earth’s system.

Lidar Network and CALIPSO

“EARLINET (2000) and EARLINET-ASOS (2006) are allowing an improvement in the preparation of a wide quantitative and statistically significant database on aerosol’s vertical structure and its temporal development in Europe”, says Alados. Satellite CALIPSO was launched to the space in April 2006, which contained the first space lidar station, able to offer a global vision of the vertical structure of aerosol and the clouds over our planet, necessary to express climatic forecasts.

However, if the 25 European lidar stations allow to offer data on a continental scale, they are also essential to validate CALIPSO’s global data. The mission will take place all through three years, and will provide essential information on aerosol’s properties. Together with other satellites of the “A-Train” constellation, CALIPSO will help to increase our knowledge about climatic system and the possible climatic change.

While CALIPSO is being validated, the observations of EARLINET all over Europe are collecting and processing essential data to get to know and assess the climatic impact of the masses of air with mineral dust arriving from Sahara to Europe, of European forest fires, the differences between the pollution produced in highly industrialized regions of Eastern Europe, the anthropogenic pollution in underdeveloped areas, the anthropogenic pollution which reaches Europe from North America, etc.

12 countries, 25 scientific groups

Thousands of yearly observaciones have turned EARLINET into an essential information source for the future of meteorological science, the assessment of climtic change and a better knowledge of our environment. The stations of the EARLINET consortium can be found from the Mediterranean to the Arctic Polar Circle, from the marine environments of mild climates to Arctic weather, from continental climate to semiarid regions, clean airs of sparsely populated areas to regions highly polluted due to urban concentrations and industry.

References: Prof Lucas Alados Arboledas. Phone numbers. 958241000-31169; 958244024. E-mail. alados@ugr.es

EARLINET: the project was funded between 2000 and 2003 by the European Commission. The EARLINET-ASOS project is funded since 2006 by the European Commission under grant RICA-025991.

CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center.

Publications related to the article:
-Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, edited by Upendra N. Singh, Gelsomina Pappalardo (2007).

-Atmospheric Environment, 42 (2008) 2668–2681

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>