Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EARLINET, European research for climatic change analysis

21.05.2008
- Experts from 12 European countries collaborate in an observation network that allows a better knowledge of particles (aerosol) present in the continent’s atmosphere (industrial, urban concentrations, Saharan dust, volcanic, forest fires, etc.).

- They have prepared a wide database on atmospheric aerosol’s vertical structure and its temporal development, essential to carry out a climatologic study of atmospheric aerosol, as well as to validate the new devices installed in artificial satellites.

- This is an example of base science generator of indispensable knowledge for the advance of atmospheric science and climatic change prevention.

The prediction of future climate is, undoubtedly, one of the main challenges of our time, marked by the concern about climatic change and its effects, such as drought and natural disasters, poles thaw, rise of the sea level, diseases, etc. Climatic change poses different scientific challenges to researchers from all over the world, which must be tackled with new ideas, reliable data and advanced instruments.

Science must provide conclusive answers, for example, about the climatic effects of human pollution, the deforestation of wide regions of the globe or forest fires. Rigorous, fast and conclusive answers are not possible when scientific challenges have planetary dimensions.

As regards atmospheric physics’s knowedge ans its possible effects on climatic change, research groups from all Europe have developed the project EARLINET-ASOS (European Aerosol Research Lidar Network: Advanced Sustainable Observation System). 25 laboratories, located in 12 European countries, carry out weekly measures simultaneously to obtain indispensable data for the carrying out of climatic studies: the analysis of the presence in the atmosphere of aerosol’s particles and the determination of its origin.

One of these stations is located in Granada (CEAMA - Andalusian Centre for the Environment), directed by Prof Lucas Alados Arboledas.

“Atmospheric aerosol represents one of the main uncertainties in the estimation of the radiative forcing of climate and, therefore, for the prediction of climatic change –says Alados-. Aerosols disturb solar radiation in the atmosphere and influence the properties of clouds and rainfall in a way we are still ignorant of”.

A few years ago, research works were focused on getting to know the distribution of aerosol particles on a worldwide scale, as well as the properties of the different types of aerosol. The advances were very relevant, but measurements from land, planes or satellite could only measure the quantity, but not its vertical distribution at different heights, a key question, for example, to get to know its effect on climate, which is generally opposite due to the increase of greenhouse gases. This is, whereas global warming is associated with greenhouse gases increase, atmospheric aerosol can contribute to a cooling of the earth’s system.

Lidar Network and CALIPSO

“EARLINET (2000) and EARLINET-ASOS (2006) are allowing an improvement in the preparation of a wide quantitative and statistically significant database on aerosol’s vertical structure and its temporal development in Europe”, says Alados. Satellite CALIPSO was launched to the space in April 2006, which contained the first space lidar station, able to offer a global vision of the vertical structure of aerosol and the clouds over our planet, necessary to express climatic forecasts.

However, if the 25 European lidar stations allow to offer data on a continental scale, they are also essential to validate CALIPSO’s global data. The mission will take place all through three years, and will provide essential information on aerosol’s properties. Together with other satellites of the “A-Train” constellation, CALIPSO will help to increase our knowledge about climatic system and the possible climatic change.

While CALIPSO is being validated, the observations of EARLINET all over Europe are collecting and processing essential data to get to know and assess the climatic impact of the masses of air with mineral dust arriving from Sahara to Europe, of European forest fires, the differences between the pollution produced in highly industrialized regions of Eastern Europe, the anthropogenic pollution in underdeveloped areas, the anthropogenic pollution which reaches Europe from North America, etc.

12 countries, 25 scientific groups

Thousands of yearly observaciones have turned EARLINET into an essential information source for the future of meteorological science, the assessment of climtic change and a better knowledge of our environment. The stations of the EARLINET consortium can be found from the Mediterranean to the Arctic Polar Circle, from the marine environments of mild climates to Arctic weather, from continental climate to semiarid regions, clean airs of sparsely populated areas to regions highly polluted due to urban concentrations and industry.

References: Prof Lucas Alados Arboledas. Phone numbers. 958241000-31169; 958244024. E-mail. alados@ugr.es

EARLINET: the project was funded between 2000 and 2003 by the European Commission. The EARLINET-ASOS project is funded since 2006 by the European Commission under grant RICA-025991.

CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center.

Publications related to the article:
-Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, edited by Upendra N. Singh, Gelsomina Pappalardo (2007).

-Atmospheric Environment, 42 (2008) 2668–2681

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

Magnetic moment of a single antiproton determined with greatest precision ever

19.01.2017 | Physics and Astronomy

CRISPR meets single-cell sequencing in new screening method

19.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>