Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EARLINET, European research for climatic change analysis

21.05.2008
- Experts from 12 European countries collaborate in an observation network that allows a better knowledge of particles (aerosol) present in the continent’s atmosphere (industrial, urban concentrations, Saharan dust, volcanic, forest fires, etc.).

- They have prepared a wide database on atmospheric aerosol’s vertical structure and its temporal development, essential to carry out a climatologic study of atmospheric aerosol, as well as to validate the new devices installed in artificial satellites.

- This is an example of base science generator of indispensable knowledge for the advance of atmospheric science and climatic change prevention.

The prediction of future climate is, undoubtedly, one of the main challenges of our time, marked by the concern about climatic change and its effects, such as drought and natural disasters, poles thaw, rise of the sea level, diseases, etc. Climatic change poses different scientific challenges to researchers from all over the world, which must be tackled with new ideas, reliable data and advanced instruments.

Science must provide conclusive answers, for example, about the climatic effects of human pollution, the deforestation of wide regions of the globe or forest fires. Rigorous, fast and conclusive answers are not possible when scientific challenges have planetary dimensions.

As regards atmospheric physics’s knowedge ans its possible effects on climatic change, research groups from all Europe have developed the project EARLINET-ASOS (European Aerosol Research Lidar Network: Advanced Sustainable Observation System). 25 laboratories, located in 12 European countries, carry out weekly measures simultaneously to obtain indispensable data for the carrying out of climatic studies: the analysis of the presence in the atmosphere of aerosol’s particles and the determination of its origin.

One of these stations is located in Granada (CEAMA - Andalusian Centre for the Environment), directed by Prof Lucas Alados Arboledas.

“Atmospheric aerosol represents one of the main uncertainties in the estimation of the radiative forcing of climate and, therefore, for the prediction of climatic change –says Alados-. Aerosols disturb solar radiation in the atmosphere and influence the properties of clouds and rainfall in a way we are still ignorant of”.

A few years ago, research works were focused on getting to know the distribution of aerosol particles on a worldwide scale, as well as the properties of the different types of aerosol. The advances were very relevant, but measurements from land, planes or satellite could only measure the quantity, but not its vertical distribution at different heights, a key question, for example, to get to know its effect on climate, which is generally opposite due to the increase of greenhouse gases. This is, whereas global warming is associated with greenhouse gases increase, atmospheric aerosol can contribute to a cooling of the earth’s system.

Lidar Network and CALIPSO

“EARLINET (2000) and EARLINET-ASOS (2006) are allowing an improvement in the preparation of a wide quantitative and statistically significant database on aerosol’s vertical structure and its temporal development in Europe”, says Alados. Satellite CALIPSO was launched to the space in April 2006, which contained the first space lidar station, able to offer a global vision of the vertical structure of aerosol and the clouds over our planet, necessary to express climatic forecasts.

However, if the 25 European lidar stations allow to offer data on a continental scale, they are also essential to validate CALIPSO’s global data. The mission will take place all through three years, and will provide essential information on aerosol’s properties. Together with other satellites of the “A-Train” constellation, CALIPSO will help to increase our knowledge about climatic system and the possible climatic change.

While CALIPSO is being validated, the observations of EARLINET all over Europe are collecting and processing essential data to get to know and assess the climatic impact of the masses of air with mineral dust arriving from Sahara to Europe, of European forest fires, the differences between the pollution produced in highly industrialized regions of Eastern Europe, the anthropogenic pollution in underdeveloped areas, the anthropogenic pollution which reaches Europe from North America, etc.

12 countries, 25 scientific groups

Thousands of yearly observaciones have turned EARLINET into an essential information source for the future of meteorological science, the assessment of climtic change and a better knowledge of our environment. The stations of the EARLINET consortium can be found from the Mediterranean to the Arctic Polar Circle, from the marine environments of mild climates to Arctic weather, from continental climate to semiarid regions, clean airs of sparsely populated areas to regions highly polluted due to urban concentrations and industry.

References: Prof Lucas Alados Arboledas. Phone numbers. 958241000-31169; 958244024. E-mail. alados@ugr.es

EARLINET: the project was funded between 2000 and 2003 by the European Commission. The EARLINET-ASOS project is funded since 2006 by the European Commission under grant RICA-025991.

CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center.

Publications related to the article:
-Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, edited by Upendra N. Singh, Gelsomina Pappalardo (2007).

-Atmospheric Environment, 42 (2008) 2668–2681

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>