Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification - another undesired side effect of fossil fuel-burning

21.05.2008
Up to now, the oceans have buffered climate change considerably by absorbing almost one third of the worldwide emitted carbon dioxide. The oceans represent a significant carbon sink, but the uptake of excess CO2 stemming from man's burning of fossil fuels comes at a high cost: ocean acidification.

Research on ocean acidification is a newly emerging field and was one of the major topics at this year's European Geosciences Union (EGU) General Assembly held in Vienna in April. The European Science Foundation EUROCORES (European Collaborative Research) programme EuroCLIMATE, which addresses in particular global carbon cycle dynamics, organized and co-sponsored several sessions on ocean acidification.

The chemistry is very straight-forward: ocean acidification is linearly related to the amount of CO2 we produce. CO2 dissolves in the ocean, reacts with seawater and decreases the pH. Since the industrial revolution, the oceans have become 30 percent more acidic (from 8.2 pH to 8.1 pH). "Under a "business as usual scenario, predictions for the end of the century are that we will lower the surface ocean pH by 0.4 pH units, which means that the surface oceans will become 150 percent more acidic - and this is a 'hell of a lot' ", said Jelle Bijma, chair of the EuroCLIMATE programme Scientific Committee and a biogeochemist at the Alfred-Wegener-Institute Bremerhaven. "Ocean acidification is more rapid than ever in the history of the earth and if you look at the pCO2 (partial pressure of carbon dioxide) levels we have reached now, you have to go back 35 million years in time to find the equivalents" continued Bijma. A maximum allowed change in pH, where the system is still controllable, needs to be found. This is a major challenge considering the multifaceted unknowns that still are to be clarified. This so-called "tipping point" is currently estimated to allow a drop of about 0.2 pH units, a value that could be reached in as near as 30 years. More research and further modeling needs to be undertaken to verify the predictions.

The expected biological impact of ocean acidification remains still uncertain. Most calcifying organisms such as corals, mussels, algae and plankton investigated so far, respond negatively to the more acidic ocean waters. Because of the increased acidity, less carbonate ions are available, which means the calcification rates of the organisms are decreasing and thus their shells and skeletons thinning. However, a recent study suggested that a specific form of single-celled algae called coccolithophores actually gets stimulated by elevated pCO2 levels in the oceans, creating even bigger uncertainties when it comes to the biological response. "There are thousands of calcifying organisms on earth and we have investigated only six to ten of them, we need to have a much better understanding of the physiological mechanisms" demanded Jean-Pierre Gattuso, a speaker from Laboratoire d'Océanographie Villefranche invited by EuroCLIMATE. In addition, higher marine life forms are likely to be affected by the rapidly acidifying oceans and entire food webs might be changing.

So far, hardly any economic impact assessments of ocean acidification exist, but with the fragile marine ecosystems under threat, it can be assumed that fisheries and many coastal economies will be severely affected. Many of these societies depend on the sea as their main source of food and the loss of species is highly detrimental to them; coral reefs serve as highly valuable tourist destinations and as natural protections against natural hazards such as tsunamis. Together with climate change, ocean acidification poses a major challenge to the oceans as a human habitat.

"Ocean acidification is happening today and it's happening on top of global warming, so we are in double trouble" stated Bijma. Only a serious cut of CO2 emission can reduce ocean acidification. Therefore, knowledge on ocean acidification is being disseminated and awareness among policymakers and the general public raised. "We need to make sure that the message gets delivered to the right people at the right time" urged Carol Turley, lead author of the Nobel prize-winning IPCC report and scientist at the Plymouth Marine Laboratory. According to her, a concise integrated opinion of leading scientists is necessary, and it would be useful for policy makers to devote one integrated chapter on the impacts of climate change including ocean acidification on the marine environment in a future IPCC report.

European science has taken the initiative to act and gain more urgently needed insight on this phenomenon of global change; an EU project on ocean acidification will be launched next month. The European Geosciences Union (EGU), an influential interdisciplinary organization, is also being proactive: "EGU is in the process of putting together a position statement on ocean acidification" said Gerald Ganssen, President of the EGU. As a result attained at a strategic workshop held in January, the ESF is currently producing a 'Science Policy Briefing' which is to be targeted at the major stakeholders and actors in the field. In addition it was felt that the issue of ocean acidification needs to be addressed in a pan-European effort and that more intensive European collaboration is required, which could be achieved through one of the ESF Science Synergy tools such as EUROCORES.

Angela Michiko Hama | alfa
Further information:
http://www.esf.org/eurocores
http://www.esf.org/euroclimate

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>