Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification - another undesired side effect of fossil fuel-burning

21.05.2008
Up to now, the oceans have buffered climate change considerably by absorbing almost one third of the worldwide emitted carbon dioxide. The oceans represent a significant carbon sink, but the uptake of excess CO2 stemming from man's burning of fossil fuels comes at a high cost: ocean acidification.

Research on ocean acidification is a newly emerging field and was one of the major topics at this year's European Geosciences Union (EGU) General Assembly held in Vienna in April. The European Science Foundation EUROCORES (European Collaborative Research) programme EuroCLIMATE, which addresses in particular global carbon cycle dynamics, organized and co-sponsored several sessions on ocean acidification.

The chemistry is very straight-forward: ocean acidification is linearly related to the amount of CO2 we produce. CO2 dissolves in the ocean, reacts with seawater and decreases the pH. Since the industrial revolution, the oceans have become 30 percent more acidic (from 8.2 pH to 8.1 pH). "Under a "business as usual scenario, predictions for the end of the century are that we will lower the surface ocean pH by 0.4 pH units, which means that the surface oceans will become 150 percent more acidic - and this is a 'hell of a lot' ", said Jelle Bijma, chair of the EuroCLIMATE programme Scientific Committee and a biogeochemist at the Alfred-Wegener-Institute Bremerhaven. "Ocean acidification is more rapid than ever in the history of the earth and if you look at the pCO2 (partial pressure of carbon dioxide) levels we have reached now, you have to go back 35 million years in time to find the equivalents" continued Bijma. A maximum allowed change in pH, where the system is still controllable, needs to be found. This is a major challenge considering the multifaceted unknowns that still are to be clarified. This so-called "tipping point" is currently estimated to allow a drop of about 0.2 pH units, a value that could be reached in as near as 30 years. More research and further modeling needs to be undertaken to verify the predictions.

The expected biological impact of ocean acidification remains still uncertain. Most calcifying organisms such as corals, mussels, algae and plankton investigated so far, respond negatively to the more acidic ocean waters. Because of the increased acidity, less carbonate ions are available, which means the calcification rates of the organisms are decreasing and thus their shells and skeletons thinning. However, a recent study suggested that a specific form of single-celled algae called coccolithophores actually gets stimulated by elevated pCO2 levels in the oceans, creating even bigger uncertainties when it comes to the biological response. "There are thousands of calcifying organisms on earth and we have investigated only six to ten of them, we need to have a much better understanding of the physiological mechanisms" demanded Jean-Pierre Gattuso, a speaker from Laboratoire d'Océanographie Villefranche invited by EuroCLIMATE. In addition, higher marine life forms are likely to be affected by the rapidly acidifying oceans and entire food webs might be changing.

So far, hardly any economic impact assessments of ocean acidification exist, but with the fragile marine ecosystems under threat, it can be assumed that fisheries and many coastal economies will be severely affected. Many of these societies depend on the sea as their main source of food and the loss of species is highly detrimental to them; coral reefs serve as highly valuable tourist destinations and as natural protections against natural hazards such as tsunamis. Together with climate change, ocean acidification poses a major challenge to the oceans as a human habitat.

"Ocean acidification is happening today and it's happening on top of global warming, so we are in double trouble" stated Bijma. Only a serious cut of CO2 emission can reduce ocean acidification. Therefore, knowledge on ocean acidification is being disseminated and awareness among policymakers and the general public raised. "We need to make sure that the message gets delivered to the right people at the right time" urged Carol Turley, lead author of the Nobel prize-winning IPCC report and scientist at the Plymouth Marine Laboratory. According to her, a concise integrated opinion of leading scientists is necessary, and it would be useful for policy makers to devote one integrated chapter on the impacts of climate change including ocean acidification on the marine environment in a future IPCC report.

European science has taken the initiative to act and gain more urgently needed insight on this phenomenon of global change; an EU project on ocean acidification will be launched next month. The European Geosciences Union (EGU), an influential interdisciplinary organization, is also being proactive: "EGU is in the process of putting together a position statement on ocean acidification" said Gerald Ganssen, President of the EGU. As a result attained at a strategic workshop held in January, the ESF is currently producing a 'Science Policy Briefing' which is to be targeted at the major stakeholders and actors in the field. In addition it was felt that the issue of ocean acidification needs to be addressed in a pan-European effort and that more intensive European collaboration is required, which could be achieved through one of the ESF Science Synergy tools such as EUROCORES.

Angela Michiko Hama | alfa
Further information:
http://www.esf.org/eurocores
http://www.esf.org/euroclimate

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>