Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Addressing the "Nitrogen Cascade": Incessant Cycling of Reactive Nitrogen in Environment

19.05.2008
While human-caused global climate change has long been a concern for environmental scientists and is a well-known public policy issue, the problem of excessive reactive nitrogen in the environment is little-known beyond a growing circle of environmental scientists who study how the element cycles through the environment and negatively alters local and global ecosystems and potentially harms human health.

Two new papers by leading environmental scientists bring the problem to the forefront in the May 16 issue of the journal Science. The researchers discuss how food and energy production are causing reactive nitrogen to accumulate in soil, water, the atmosphere and coastal oceanic waters, contributing to the greenhouse effect, smog, haze, acid rain, coastal "dead zones" and stratospheric ozone depletion.

"The public does not yet know much about nitrogen, but in many ways it is as big an issue as carbon, and due to the interactions of nitrogen and carbon, makes the challenge of providing food and energy to the world's peoples without harming the global environment a tremendous challenge," said University of Virginia environmental sciences professor James Galloway, the lead author of one of the Science papers and a co-author on the other. "We are accumulating reactive nitrogen in the environment at alarming rates, and this may prove to be as serious as putting carbon dioxide in the atmosphere."

Galloway, the founding chair of the International Nitrogen Initiative, and a co-winner of the 2008 Tyler Prize for environmental science, is a longtime contributor to the growing understanding of how nitrogen cycles endlessly through the environment. In numerous studies over the years he has come to the realization of the "nitrogen cascade," and has created with his colleagues a flow chart demonstrating the pervasive and persistent effects of reactive nitrogen on Earth's environment (www.initrogen.org).

In its inert form, nitrogen is harmless and abundant, making up 78 percent of the Earth's atmosphere. But in the past century, with the mass production of nitrogen-based fertilizers and the large-scale burning of fossil fuels, massive amounts of reactive nitrogen compounds, such as ammonia, have entered the environment.

"A unique and troublesome aspect of nitrogen is that a single atom released to the environment can cause a cascading sequence of events, resulting ultimately in harm to the natural balance of our ecosystems and to our very health," Galloway said.

A nitrogen atom that starts out as part of a smog-forming compound may be deposited in lakes and forests as nitric acid, which can kill fish and insects. Carried out to the coast, the same nitrogen atom may contribute to red tides and dead zones. Finally, the nitrogen will be put back into the atmosphere as part of the greenhouse gas nitrous oxide, which destroys atmospheric ozone.

Galloway and his colleagues suggest possible approaches to minimizing nitrogen use, such as optimizing its uptake by plants and animals, recovering and reusing nitrogen from manure and sewage, and decreasing nitrogen emissions from fossil fuel combustion.

"Nitrogen is needed to grow food," Galloway says, "but because of the inefficiencies of nitrogen uptake by plants and animals, only about 10 to 15 percent of reactive nitrogen ever enters a human mouth as food. The rest is lost to the environment and injected into the atmosphere by combustion.

"We must soon begin to manage nitrogen use in an integrated manner by decreasing our rate of creation of reactive nitrogen while continuing to produce enough food and energy to sustain a growing world population.”

Galloway's next effort is to create a "nitrogen footprint" calculator that people can access on the Internet, very similar to current "carbon footprint" calculators.

He says people can reduce their nitrogen footprints by reducing energy consumption at home, traveling less, and changing diet to locally grown vegetables (preferably organic) and fish and consuming less meat.

Galloway is quick to point out that along with the problems of excess reactive nitrogen in many areas of the world, there also are large regions, such as Africa, with too little nitrogen to grow enough food for rapidly growing populations. In those regions, the challenge is find ways to increase the availability of nitrogen while minimizing the negative environmental effects of too much nitrogen.

James Galloway | newswise
Further information:
http://www.virginia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>