Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Native plants can also benefit from the invasive ones

Using empirical tests, a pioneering study shows how plant species, such as the prickly pear, invade Mediterranean ecosystems, and can either rob the native plants of pollinating insects, or, surprisingly, can attract them, thus benefiting the whole plant community, such as in the case of balsam.

The research contradicts the hypothesis of the “floral market” whereby only the invasive flowers are seen to benefit and the native flowers are no longer visited by pollinating insects.

Biological invasions (species transported by humans outside their region of origin to other regions where these species become established and expand) are one of the major causes of the loss of biodiversity. The plants fight for nutrients, space and light, and for pollinating insects.

An article about this subject has been published in the “Oecología” [Oecology] journal by scientists at the Universidad Autónoma de Barcelona (UAB), [the Autonomous University, Barcelona], the Biological Station, Donana, CSIC [the Spanish National Research Council] and the Instituto Mediterráneo de Estudios Avanzados (IMEDEA) [Mediterranean Institute for Advanced Studies]. According to the research, the existence of invasive plants in invaded sites can increase visits from insects to the majority of native plants. In this way the “floral market” hypothesis in which only the invasive flowers are seen to benefit and the native flowers are no longer visited by insects is contradicted.

Ignasi Bartomeus, a researcher at the UAB, and the main author of the study, points out some important details to SINC: “the invasions do not follow a single pattern: for this reason it is necessary to understand the mechanisms and structure whereby the native species compete”.

The two invasive plants under study, Opuntia stricata – a type of prickly pear – and Carpobrotus affine acinaciformis – also called Sally-my-handsome or balsam – have more eye-catching flowers and are richer in pollen that the rest of the native plants and receive many more insect visits that the latter.

The study reveals that the invasive plants play a central role in the plant pollination network. This is because during the period of the study, Opuntia stricta received 30.9% of insect visits, compared to 43.4% for Carpobrotus affine acinaciformis.

The scientists discovered that the more resources there are in the plant community, the more pollinators will be attracted towards all of the plants, although it is still not known whether the impact on the seeds of the native plant is positive or not. This is the case for Carpobrotus, which can impact upon the pollination of the native plants.

The researchers observed 23 pollinating insects for Carpobrotus and 17 for Opuntia. Compared to the native plants, the two invasive plants have a different impact. In the first case, there was no insect that was an exclusive pollinator, whereas in the second case, the carpenter bee (Xylocopa violacea) was an exclusive pollinator. “The Opuntia flowers monopolise the market, attracting all the pollinating insects in the area to their flowers, whereas the Carpobrotus attracts more pollinating insects to the area, but all the plants are seen to benefit”, Bartomeus points out.

The study concludes that Carpobrotus can improve the reproduction of the native plants whereas Opuntia reduces it. Bartomeus confirms to SINC that “the presence of the invasive plants can alter the structure of the plant community, and it is difficult to predict the long-term effects of this.”

SINC Team | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>