Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Something Old, Something New: Scientists Trace Soils’ Contribution to Climate Change

14.05.2008
Knowing that soils are a potential climate change time-bomb is nothing new — but now, for the first time, a group of international scientists have found a way to distinguish just how much of these ancient carbon stores are being lost to the atmosphere as CO2. This means that in the future they may be able to accurately forecast how loss of soil carbon will impact on climate change.

Project leader Professor Pete Millard of Aberdeen’s Macaulay Institute explains: “Globally, soils contain over 300 times the amount of carbon released each year due to the burning of fossil fuels, and this carbon has until now, been safely locked up below ground.

“As the planet is warming up, this carbon is being released from the soil into the atmosphere as carbon dioxide, but there are in fact two types of carbon —‘new’ carbon, which has recently entered the soil through vegetation, and ‘old’ carbon, which has been locked up in the soil for years.

“It is the amount of this old carbon being lost as CO2 that has the biggest climate change effect,” he added, “as it signifies the soil changing from being a carbon-store to a source of carbon — a carbon-emitter.”

Measuring the loss of carbon from soils is relatively straightforward, but determining how much is from this old carbon has up to now proved very difficult. Now this joint project between the Macaulay Institute, Aberdeen and Landcare Research, New Zealand, has developed a method to measure the release of old carbon from soils.

Their approach is based upon the measurement of very small differences in the amount of an isotope, carbon-13, which is naturally present in all carbon dioxide, including that released by soils into the atmosphere.

"We are excited because it's very relevant at the moment. We need to predict how the climate is going to change and of course that's related to the atmosphere, the vegetation and the soil," said Professor Millard.

Funded by the Scottish government and the Royal Society of New Zealand Marsden fund, the researchers have been working on this for three years, and now for the first time, they have been able to differentiate how much old, historical carbon is being released from soils.

"The implications of knowing this are very important and it will enable us to determine for the first time what the consequences of changes in land use might be for climate change," said Professor Millard. "As more CO2 is released from the soil, the temperature is going to increase further — it could almost be a runway reaction.”

Also working on the project are David Whitehead, John Hunt and Margaret Barbour from Landcare Research, NZ.

Dave Stevens | alfa
Further information:
http://www.macaulay.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>