Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Something Old, Something New: Scientists Trace Soils’ Contribution to Climate Change

14.05.2008
Knowing that soils are a potential climate change time-bomb is nothing new — but now, for the first time, a group of international scientists have found a way to distinguish just how much of these ancient carbon stores are being lost to the atmosphere as CO2. This means that in the future they may be able to accurately forecast how loss of soil carbon will impact on climate change.

Project leader Professor Pete Millard of Aberdeen’s Macaulay Institute explains: “Globally, soils contain over 300 times the amount of carbon released each year due to the burning of fossil fuels, and this carbon has until now, been safely locked up below ground.

“As the planet is warming up, this carbon is being released from the soil into the atmosphere as carbon dioxide, but there are in fact two types of carbon —‘new’ carbon, which has recently entered the soil through vegetation, and ‘old’ carbon, which has been locked up in the soil for years.

“It is the amount of this old carbon being lost as CO2 that has the biggest climate change effect,” he added, “as it signifies the soil changing from being a carbon-store to a source of carbon — a carbon-emitter.”

Measuring the loss of carbon from soils is relatively straightforward, but determining how much is from this old carbon has up to now proved very difficult. Now this joint project between the Macaulay Institute, Aberdeen and Landcare Research, New Zealand, has developed a method to measure the release of old carbon from soils.

Their approach is based upon the measurement of very small differences in the amount of an isotope, carbon-13, which is naturally present in all carbon dioxide, including that released by soils into the atmosphere.

"We are excited because it's very relevant at the moment. We need to predict how the climate is going to change and of course that's related to the atmosphere, the vegetation and the soil," said Professor Millard.

Funded by the Scottish government and the Royal Society of New Zealand Marsden fund, the researchers have been working on this for three years, and now for the first time, they have been able to differentiate how much old, historical carbon is being released from soils.

"The implications of knowing this are very important and it will enable us to determine for the first time what the consequences of changes in land use might be for climate change," said Professor Millard. "As more CO2 is released from the soil, the temperature is going to increase further — it could almost be a runway reaction.”

Also working on the project are David Whitehead, John Hunt and Margaret Barbour from Landcare Research, NZ.

Dave Stevens | alfa
Further information:
http://www.macaulay.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>