Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lombraña: “Our work involves the oxidation of contaminants as if we were burning them in the water itself”

13.05.2008
Reducing the level of contamination of water is the aim of the line of research being undertaken by Dr. José Ignacio Lombraña at the University of the Basque Country’s Faculty of Science and Technology. He is investigating chemical treatment capable of eliminating contaminants dumped by industry, in order to reuse the waste water.

Industrial activity is one of the principal causes of contamination in water, given that industry dumps large amounts of chemical compounds into rivers that are not capable of degrading by themselves. While most organic waste is biodegradable, others, such as plastics, colorants or detergents, ever-present in industry, stay in the water impeding its use as a resource.

It was within this context that Dr. José Ignacio Lombraña led his research at the Faculty of Science and Technology of the University of the Basque Country (UPV/EHU). His goal was to find new technologies to eliminate contaminant substances dumped in water, by means of a process known as advanced oxidation. As Dr. Lombraña stated, “this involves oxidising the chemical compound – as if the substance were being burnt in the water itself”.

In order for the contaminants to be oxidised in the water, the Energy and Environmental Chemical Engineering team to which Dr. Lombraña belongs, used ozone (O3) and hydrogen peroxide (H2O2), two molecules that, under certain conditions, achieve great oxidative efficiency. The chemical process known as advanced oxidation enables the reduction of the level of contaminants to the point where they can degrade by themselves or otherwise continue to be treated using conventional methods.

Dr. Lombraña stated that, “chemically it would be possible to eliminate them completely but, to do this, a great amount of oxidant would be required and under very costly conditions which would not be economically viable”. The advantage of ozone and hydrogen peroxide is that the process involves “clean” molecules, “unlike other substances such as, for example, chlorine, these molecules disappear on fulfilling their oxidative function”, explained Dr. Lombraña.

Contamination of water as a starting point

Given the practical nature of the research, Dr. Lombraña takes a real problem as a starting point; for example, the presence of a contaminant that prevents using the water from a particular source. In the first place he chose three large groups of contaminants: colorants, detersive water (contaminated with detergents) and phenolics (containing phenol and derivatives). Once the compound responsible for the contamination is defined, “we construct a waste water model which facilitates its study, i.e. we create a kind of ‘synthetic water’ that contains basically the same substance as that we wish to oxidise”, explained Dr. Lombraña.

One of the main achievements of this research undertaken at the UPV/EHU was precisely the defining of models for the degradation of various compounds or, as the Director of the project put it, “describing why a molecule passes through phases or states until its total degradation”. Notable amongst the oxidation techniques studied, was the FENTON reagent (a mixture of iron salts and hydrogen peroxide) and the combination of hydrogen peroxide with ultraviolet rays.

The research team finally started the verification stage: “We tested the previously described degradation models in water dumped by companies in the area in order to check the efficacy of the oxidants in the destruction of these key contaminants”, pointed out Dr. Lombraña.

The work of the research team at the UPV-EHU Faculty of Science and Technology was not limited to analysing and describing the oxidation processes of different contaminants. It also studied the design of the equipment required for this work. Thus, a number of ozonisation prototypes (installations for applying ozone to water) were developed, optimising the conditions for producing oxidation.

A technique with a vision for the future

Advanced oxidation is a technology which is still at the development stage and, thus, is still not usually used in water treatment plants. The aim of the research led by José Ignacio Lombraña is to contribute to the knowledge base required for this technology to be applicable, not so much at water treatment plants as at treatment plants specifically devoted to water of industrial origin. “The greatest difficulties arise when we come across test banks as companies want instant solution products and only the largest enterprises can afford the investment in pilot prototypes for their installations”, stated Dr. Lombraña.

The project, entitled, New strategies in advanced oxidation technologies using ozone and hydrogen peroxide, received a grant from the Ministry of Education and Science, and falls within the remit of the overall research lines into the recovery of waste water. The team currently led by Dr. José Ignacio Lombraña has embarked on a new project coordinated by the Pyrenees Work Community and in which the Rovira i Virgili University of Tarragona and the University of Toulouse (France) are taking part.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1740&hizk=I

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>