Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lombraña: “Our work involves the oxidation of contaminants as if we were burning them in the water itself”

13.05.2008
Reducing the level of contamination of water is the aim of the line of research being undertaken by Dr. José Ignacio Lombraña at the University of the Basque Country’s Faculty of Science and Technology. He is investigating chemical treatment capable of eliminating contaminants dumped by industry, in order to reuse the waste water.

Industrial activity is one of the principal causes of contamination in water, given that industry dumps large amounts of chemical compounds into rivers that are not capable of degrading by themselves. While most organic waste is biodegradable, others, such as plastics, colorants or detergents, ever-present in industry, stay in the water impeding its use as a resource.

It was within this context that Dr. José Ignacio Lombraña led his research at the Faculty of Science and Technology of the University of the Basque Country (UPV/EHU). His goal was to find new technologies to eliminate contaminant substances dumped in water, by means of a process known as advanced oxidation. As Dr. Lombraña stated, “this involves oxidising the chemical compound – as if the substance were being burnt in the water itself”.

In order for the contaminants to be oxidised in the water, the Energy and Environmental Chemical Engineering team to which Dr. Lombraña belongs, used ozone (O3) and hydrogen peroxide (H2O2), two molecules that, under certain conditions, achieve great oxidative efficiency. The chemical process known as advanced oxidation enables the reduction of the level of contaminants to the point where they can degrade by themselves or otherwise continue to be treated using conventional methods.

Dr. Lombraña stated that, “chemically it would be possible to eliminate them completely but, to do this, a great amount of oxidant would be required and under very costly conditions which would not be economically viable”. The advantage of ozone and hydrogen peroxide is that the process involves “clean” molecules, “unlike other substances such as, for example, chlorine, these molecules disappear on fulfilling their oxidative function”, explained Dr. Lombraña.

Contamination of water as a starting point

Given the practical nature of the research, Dr. Lombraña takes a real problem as a starting point; for example, the presence of a contaminant that prevents using the water from a particular source. In the first place he chose three large groups of contaminants: colorants, detersive water (contaminated with detergents) and phenolics (containing phenol and derivatives). Once the compound responsible for the contamination is defined, “we construct a waste water model which facilitates its study, i.e. we create a kind of ‘synthetic water’ that contains basically the same substance as that we wish to oxidise”, explained Dr. Lombraña.

One of the main achievements of this research undertaken at the UPV/EHU was precisely the defining of models for the degradation of various compounds or, as the Director of the project put it, “describing why a molecule passes through phases or states until its total degradation”. Notable amongst the oxidation techniques studied, was the FENTON reagent (a mixture of iron salts and hydrogen peroxide) and the combination of hydrogen peroxide with ultraviolet rays.

The research team finally started the verification stage: “We tested the previously described degradation models in water dumped by companies in the area in order to check the efficacy of the oxidants in the destruction of these key contaminants”, pointed out Dr. Lombraña.

The work of the research team at the UPV-EHU Faculty of Science and Technology was not limited to analysing and describing the oxidation processes of different contaminants. It also studied the design of the equipment required for this work. Thus, a number of ozonisation prototypes (installations for applying ozone to water) were developed, optimising the conditions for producing oxidation.

A technique with a vision for the future

Advanced oxidation is a technology which is still at the development stage and, thus, is still not usually used in water treatment plants. The aim of the research led by José Ignacio Lombraña is to contribute to the knowledge base required for this technology to be applicable, not so much at water treatment plants as at treatment plants specifically devoted to water of industrial origin. “The greatest difficulties arise when we come across test banks as companies want instant solution products and only the largest enterprises can afford the investment in pilot prototypes for their installations”, stated Dr. Lombraña.

The project, entitled, New strategies in advanced oxidation technologies using ozone and hydrogen peroxide, received a grant from the Ministry of Education and Science, and falls within the remit of the overall research lines into the recovery of waste water. The team currently led by Dr. José Ignacio Lombraña has embarked on a new project coordinated by the Pyrenees Work Community and in which the Rovira i Virgili University of Tarragona and the University of Toulouse (France) are taking part.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1740&hizk=I

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>