Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainfall and river networks prove accurate predictors of fish biodiversity

09.05.2008
Princeton researchers have invented a method for turning simple data about rainfall and river networks into accurate assessments of fish biodiversity, allowing better prediction of the effects of climate change and the ecological impact of man-made structures like dams.

The mathematics behind the new method also can be used to model and predict a wide range of other questions, from the transmission of waterborne illnesses to vegetation patterns on land adjacent to rivers.

The researchers, who published a report in the May 8 issue of Nature, have created a computer simulation that allows them to predict -- based on rainfall measurements and the structure of river networks -- how many species of fish will occupy any given region.

“It is an extremely simple model but it predicts absolutely fantastically well all of the characteristics of biodiversity that we were interested in,” said Ignacio Rodríguez-Iturbe, the James S. McDonnell Distinguished University Professor of Civil and Environmental Engineering and the leader of the research group that published the report in Nature.

“Our model implies that water dynamics have a commanding effect on biodiversity in river basins.”

Paolo D'Odorico, associate professor of environmental sciences at the University of Virginia, called the research “exquisitely original and thought-provoking.”

“It is the first study I am aware of that provides a real quantitative framework for the study of river biogeography,” D'Odorico said.

In their research, the authors merged different sets of existing data from the Mississippi-Missouri river basin, an extremely large region that covers more than half of the United States. This network of rivers springs from the Mississippi River, which cuts down the middle of the country. The triangle-shaped basin stretches from Minnesota to Louisiana and from Montana to New York.

Using one set of data, the researchers were able to identify 824 distinct sub-basins and establish how the rivers within each sub-basin were linked together. Another set of data identified 433 different species of fish living in those sub-basins. A third set of data identified each region’s average runoff, which is the amount of rainfall that ends up in rivers or streams as opposed to water that is soaked up by the ground.

The researchers combined all these data and came up with a computer model that accurately predicts how many different species of fish will inhabit any given sector of the river basin. Their research shows that the habitats richest in the diversity of species are areas where multiple streams are close to one another.

“This will help identify which parts of a river basin are ‘hot spots,’ meaning they have more species than others and therefore should receive special care,” said Rodríguez-Iturbe, senior author of the paper.

To create their model for the Nature paper, the researchers disregarded the biological features of the fish in question -- for example, which species might be tenacious predators or which might be well-suited to take advantage of available food in the area. The model tracks how many species will thrive in a given area but does not predict which species. It is what is known as a “neutral” model and thus treats each fish equally.

The lead author of the paper is Rachata Muneepeerakul, a postdoctoral researcher at Princeton who received his Ph.D. from the University in 2007. Co-authors are hydrologists Andrea Rinaldo and Enrico Bertuzzo of the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, and Heather Lynch and William Fagan of the Department of Biology at the University of Maryland. The study was funded by the James S. McDonnell Foundation.

“The authors have combined sophisticated ecological theory and sophisticated hydrological theory,” said Simon Levin, the George M. Moffett Professor of Biology at Princeton. “This is work not only of practical importance, but [it] also stretches the boundaries of biogeography.”

Biodiversity characterizes the number of species within an ecosystem. Biogeography is the study of how biodiversity changes across space and over time.

“If because of climate change you have an increase in rainfall, our model can tell you how that will affect biodiversity,” said Rodríguez-Iturbe. “Or if you have a change in the connectivity of rivers due to human activity -- for example, the building of a dam -- our model can also measure how that will affect the numbers and distributions of species.”

River networks act as ecological corridors and as such the model will be useful not just for understanding the biodiversity of fish in rivers but also for understanding such things as the dispersal of seeds or even the spread of cholera. Rodríguez-Iturbe, Bertuzzo and Rinaldo also collaborated on a paper that recently appeared in an American Geophysical Union publication on how river networks affect the spread of cholera epidemics.

“Seeds and bacteria are different from fish -- obviously they can’t swim upstream,” said Rodríguez-Iturbe. “But like fish, their distribution is dramatically impacted and controlled by the river network.”

In order to construct the model, the researchers created a mathematical representation of river systems that went far beyond simple volume calculations. They drew upon an advanced area of geometry known as fractals.

River networks are examples of fractals, fragmented geometric shapes whose parts are, mathematically speaking, smaller versions of the whole. Fractals occur widely in nature. For example, the branching structure of trees -- from trunk to branch to twig -- are fractals, as are clouds and lightning bolts and snowflakes.

Unlike in a savannah, where wildlife move across an open plain, in a river basin fish have to move through the fragmented space of river networks, which like all fractals follow a predicable set of mathematical rules.

River networks have “a universal type of structure independent of scale,” said Rodríguez-Iturbe. “Some may be big or small, elongated or round, but they all follow some basic features regardless of their scale, regardless of their size, regardless of where they are located in the world.”

Teresa Riordan | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>