Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCS ­ grasping at straws in the climate debate?

09.05.2008
Great hopes are being placed on undeveloped technology. Capturing and storing carbon dioxide is predicted to be one of the most important measures to counter the threats to our climate. But the technology still hasn't been tested in full scale, and the complications and risks it entails may have been grossly underestimated.

This is the conclusion drawn in Anders Hansson's dissertation at the Department of Technology and Social Change, Linköping University, in Sweden. He studied documents from the EU and the UN Climate Panel about CCS (Carbon dioxide Capture and Storing), as well as some of the research they are based on. The UN Climate Panel released its most thoroughly considered report ever last year, supported by an uncommonly unanimous research community.

The Climate Panel sees CCS as offering great potential. In various scenarios it accounts for between 15 and 55 percent of the reduction of greenhouse gases by 2100. The EU also is promoting CCS, suggesting that it be included in the trading of emission rights, for example. Carbon dioxide that is captured in energy production, for example, and is placed in long-term storage in the crust of the earth would thus be counted as never having been produced, according to the EU proposal. The consequence is that coal power, which is the biggest area of application for CCS, is being called sustainable coal and is equated in many respects with renewable energy.

The problem is, according to Anders Hansson, that CCS is still a relatively untested method.

"There are a number of small facilities, in Norway, for instance, where they capture and store a million tons of carbon dioxide per year. Swedish Vattenfall is starting a pilot facility in eastern German this summer."

Globally, a total of some millions of tons per year is being stored today within the framework of CCS. But to live up to the hopes placed on CCS requires the storage of several billion tons. In other words, this involves gargantuan volumes. In fact, carbon dioxide would be the world's largest transported good.

"In full scale this technology only exists in the imaginations of the people developing it," says Anders Hansson. "It's overly optimistic to place such great faith in it, considering all the uncertainties found in the scientific literature."

Several researchers studying CCS point out themselves that their models and scenarios in many respects are based on insufficient factual foundations, unrealistic assumptions, and major oversimplifications. The economic calculations, which are often carried out with a hundred-year horizon, rarely factor in external and social costs, which may entail that the costs are hugely underestimated. The EU is counting on CCS to be working in full scale in about 15 years. But despite the fact that this technology will touch the lives of many people, very few people know much about it and its projected scope. Interview-based studies have shown that at most only 20 percent of the general public has heard of CCS.

"CCS needs to become known and be debated," says Anders Hansson. "Otherwise there is a risk of a backlash similar to what happened with nuclear power."

This has already occurred in California, where popular protests last year stopped a law about carbon dioxide storage.

Anders Hansson also wonders whether CCS would delay or hasten long-term sustainable solutions to energy and climate problems.

"After all, we all agree that fossil fuels will run out. Renewable energy is the only long-term path. In that perspective, a large-scale commitment to CCS seems to be an unnecessary detour."

Anders Hansson will defend his dissertation on June 5, at 1:15 p.m. in Hall 101, I Building, Campus Valla.

He can be reached at phone: +46 (0)13-282954; cell phone: +46 (0)704-438823; e-mail: andha@tema.liu.se

Anika Agebjörn | idw
Further information:
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>