Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sounding out Congo Red

08.05.2008
Ultrasound can drain the color from toxic dyes

Brightly colored dyes such as the shimmering Congo Red commonly used in silk clothing manufacture are notoriously difficult to dispose of in an environmentally benign way.

Congo Red is an azo dye, it is toxic to many organisms and is a suspected carcinogen and mutagen. To give it its full name it is the disodium salt of 3,3'-(1E,1'E)-biphenyl-4,4'-diylbis(diazene-2,1-diyl)bis(4-aminonaphthalene-1-sulfonate). It is a benzidine-based anionic disazo dye. Benzidine and Congo Red are, however, banned in many countries because of health concerns. But, it is still widely used in several countries.

Apparently it is used not only to dye silk a gorgeous red, but cleverly adds a second shimmering color and rending the red silk shot through with yellow. It also represents a significant effluent problem along with related dyes from textiles, printing and dyeing, paper, rubber, and plastic industries. Its structural stability makes it highly resistant to biodegradation, and obviously its bright color and toxicity are entirely undesirable in the environment.

Writing in the International Journal of Environment and Waste Management (2008, 2, 309-319), Srinivas Sistla and Suresh Chintalapati, from Hyderabad, India, explain a new approach to degrading Congo Red based on ultrasound.

The researchers point out that advanced oxidation processes (AOP) are currently being developed for remediation of contaminated effluent because they generate no hazardous sludge. Oxidative degradation is based on free radical attack using powerful oxidants. However, Sistla and Chintalapati suggest that sonolysis, break down of an organic compound with ultrasound, has so far been investigated only rarely as an alternative remediation technology. Under well-established 'extreme' conditions, materials irradiated with sound at frequencies around 50 kHz are essentially ripped apart by the formation of free radicals, say the researchers. Carbon dioxide and water are the usual products, although with the case of azo dyes, nitrogen would also feature in the byproducts.

Sonication of Congo Red in the aqueous phase with 50 kHz ultrasound transforms it into a milieu of less toxic intermediates that can then be broken down still further by conventional industrial waste water biodegradation treatment. As a proof of principle, the researchers suggest that the combination of ultrasound and biodegradation could allow the color to be removed from dye-contaminated industrial effluent effectively and the toxicity reduced to negligible levels. "The results obtained from this study revealed the ability of ultrasonic irradiation to transform the aromatic inhibitory compounds to less toxic intermediates, which can be further utilized in aerobic/anaerobic oxidation," the researchers conclude.

Srinivas Sistla | EurekAlert!
Further information:
http://www.inderscience.com/

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>