Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity: It's in the water

08.05.2008
What if hydrology is more important for predicting biodiversity than biology?

Research published in the May 8th issue of the journal Nature challenges current thinking about biodiversity and opens up new avenues for predicting how climate change or human activity may affect biodiversity patterns.

In the article, an international group of researchers demonstrates that the distribution of fish species in a river system can be accurately predicted with a simple method that uses only the geomorphology of the river network and rainfall measurements for the river system.

The 3,225,000 km2 Mississippi-Missouri river basin covers all or part of 31 US states, spanning diverse habitat types and encompassing very different environmental conditions. The one thing linking all these habitats is the vast river network. Using geomorphological data from the US Geological Survey, the researchers – hydrologists from Princeton University and the EPFL in Lausanne, Switzerland, and biologists from the University of Maryland – identified 824 sub-basins in the network. In these, the simple presence (or not) of 433 species of fish was established from a database of US freshwater fish populations. Data on the average runoff production –the amount of rainfall that ends up in the river system and not evaporated back into the air – was then used to calculate the habitat capacity of each sub-basin.

With just four parameters, it’s “an almost ridiculously simple model,” explains EPFL professor Andrea Rinaldo. The model results were compared to extensive data on actual fish species distributions. Various different measures of biodiversity were analyzed, and the researchers were surprised to find that the model captured these complex patterns quite accurately. The model is all the more remarkable for what it does not contain – any reference, anywhere, to the biological properties of individual fish species.

It is a formulation that could be applied to any river system, or in fact, any network at all. All that's needed are the geomorphology of the landscape and an estimate of average dispersal behavior and habitat capacity. This model is general enough that it could be used to explore population migrations or epidemics of water-borne diseases in addition to biodiversity patterns. The researchers plan to extend their work to explore the extent to which simple hydrology can act as the determining factor in a wide range of biodiversity patterns.

“These results are a powerful reminder of the overarching importance of water, and the water-defined landscape, in determining patterns of life,” notes Princeton professor Ignacio Rodriguez-Iturbe. It provides a framework that could be used to connect large scale environmental changes to biodiversity. Changes in precipitation patterns, perhaps due to global climate change, could be mapped to changes in habitat capacities in the model, ultimately providing a way to estimate how climate change would alter large-scale patterns of biodiversity. It could also be used for an assessment of the impact of specific, local human activities, such as flow re-routing or damming, on the biodiversity patterns in a river network.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>