Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seed dispersal in mauritius -- dead as a dodo?

07.05.2008
Walking through the last rainforests on the volcanic island of Mauritius, located some 800 km east of Madagascar, one is surrounded by ghosts.

Since human colonisation in the 17th century, the island has lost most of its unique animals. The litany includes the famous flightless dodo, giant tortoises, parrots, pigeons, fruitbats, and giant lizards. It is comparatively easy to notice the los­­s of a species, but much more difficult to realise how many interactions have been lost as a result.

Recent work has highlighted how it is not species diversity per se, which breathes life into ecosystems, but rather the networks of interactions between organisms. Thus, the real ghosts in Mauritius are not as much the extinct animals themselves, but more importantly the extinct networks of interactions between the species.

Reporting in this week’s PLoS ONE, Dennis Hansen, Christopher Kaiser and Christine Müller from the University of Zurich investigate how the loss of seed dispersal interactions in Mauritius may affect the regeneration of endemic plants. Why is it important for seeds to be dispersed away from maternal plants" One possible answer is given by the Janzen-Connell model, one of the most studied ecological patterns in tropical mainland forests –but which so far has not been experimentally investigated on oceanic islands. In essence, the model suggests that for successful seedling establishment, seeds need to be dispersed away from adult trees of the same species, to escape natural enemies that are associated with the adult trees (seed predators, pathogens, herbivores). The recent loss of most frugivores in Mauritius has left many fleshy-fruited plant species stranded without crucial seed dispersal interactions, leaving the na tural regeneration dynamics of the forests at a virtual standstill.

Within the framework of the Janzen-Connell model, the ecologists investigated seed germination and seedling survival patterns of one of the many critically endangered endemic trees, Syzygium mamillatum (Myrtaceae), in relation to distance from maternal trees. The results showed strong negative effects of proximity to maternal trees on growth and survival of seedlings, suggesting that dispersal is crucial for successful seedling establishment of this species. However, no extant frugivores eat the fruits of S. mamillatum, and most fruits are left to rot on the forest floor. In pristine Mauritius, the fruits would likely have been eaten and the seeds dispersed by ground-dwellers such as the dodo, the giant tortoises or giant lizards.

It may seem an impossible task to resurrect these lost interactions – simply because the Mauritian dodo is, well, dead as a dodo. However, recent studies have suggested rejuvenating lost interactions in currently dysfunctional ecosystems by using analogue species to replace extinct species – so-called ‘rewilding’. In one of the first experimental assessments of the use of ecological analogue seed dispersers, the Zurich group of ecologists successfully used giant Aldabran tortoises as stand-ins for the two extinct Mauritian tortoises in feeding experiments. Seedlings from gut-passed seeds grew taller, had more leaves, and suffered less damage from natural enemies than any of the other seedlings. The results thus show that Aldabran giant tortoises can be efficient analogues that can replace extinct endemic seed dispersers of S. mamillatum.

Overall, while it is acknowledged that oceanic islands harbour a disproportionally large fraction of the most critically endangered plant species in the world, the study highlights how little we know about how the predictions of the Janzen-Connell model affects the regeneration and longer-term survival of endangered plants on islands. The results potentially have serious implications for the conservation management of rare plants on oceanic islands. Here, plants are often crammed into very small nature reserves, in which seedlings may be unable to disperse far enough to escape high natural enemy pressures around adult trees.

Lastly, in contrast to recent controversy about rewilding projects in North America and elsewhere, this study also illustrates how Mauritius and other oceanic islands are ideal study systems in which to empirically explore the use of ecological analogue species in restoration ecology.

Dennis Hansen | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>