Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming will negatively impact tropical species

07.05.2008
Global warming is likely to reduce the health of tropical species, scientists from UCLA and the University of Washington report May 6 in Proceedings of the National Academy of Sciences.

At the same time, a little bit of warming may actually move certain organisms, particularly insects, in the high latitudes closer to their optimal temperature, the researchers say.

"In the tropics, most of the organisms we have studied, from insects to amphibians and reptiles, are already living at their optimal physiological temperatures," said Curtis Deutsch, UCLA assistant professor of atmospheric and oceanic sciences and co-author of the study. "When warming starts, they do less well as they move toward the hottest end of their comfort range. Even a modest increase in temperature appears rather large to them and negatively impacts their population growth rates."

Why should we be concerned with the fate of insects in the tropics?

"The biodiversity of the planet is concentrated in tropical climates, where there is a tremendous variety of species," Deutsch said. "This makes our finding that the impacts of global warming are going to be most detrimental to species in tropical climates all the more disturbing. In addition, what hurts the insects hurts the ecosystem. Insects carry out essential functions for humans and ecosystems — such as pollinating our crops and breaking down organic matter back into its nutrients so other organisms can use them. Insects are essential to the ecosystem."

At least for the short term, the impact of global warming will have opposing effects. In the tropics, warming will reduce insects' ability to reproduce; in the high latitudes, the ability of organisms to reproduce will increase slightly, Deutsch said. If warming continues, the insects in the high latitudes would eventually be adversely affected as well.

"Our results imply that in the absence of any adaptation or migration by these populations in the tropics, they will experience large declines in their population growth rate," Deutsch said. "This could lead to a fairly rapid population collapse, but organisms are adaptable; the question is, what will their response be? They could migrate toward the poles or toward higher elevations, for instance."

"We don't think this is restricted to insect species," Deutsch said. "Data on turtles, lizards, frogs and toads show patterns that are very similar to what we find for insects. They will do much worse in the tropics than in the high latitudes."

Scientists have measured in laboratories how sensitive different species are to changes in temperature. For insects, the data is comprehensive and includes information on how temperature affects the population growth rate for species, Deutsch said. He and his colleagues — who included Joshua Tewksbury, assistant professor of biology at the University of Washington, and Raymond Huey, professor of biology at the University of Washington — studied the data, then went to climate models and analyzed what the predicted temperature change in various regions implied about species' future growth rate.

According to climate predictions, more rapid rates of warming of the Earth's surface will occur in the higher latitudes, especially in the polar regions, than at the equator, Deutsch said.

"You would think a larger warming in Alaska would have a greater impact on the organisms living there than a much smaller increase in, say, Panama or Costa Rica," he said. "We found the opposite will be true. A 1-degree temperature change in Panama will not be felt the same way by an organism as a 1-degree temperature change in Alaska."

The range of temperature tolerance that an organism has is largely dependent on how much temperature variability it experiences. In the tropics, the amount of temperature variability is very small; there is little difference between summer and winter, while in Alaska, the seasons are dramatically different.

To live in their environments, organisms in the tropics should have a relatively narrow tolerance for temperature change, while in the high latitudes, organisms should be able to tolerate a much wider variation in temperature.

"The magnitude of the impact of global warming depends largely on what we do to slow it down," Deutsch said.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>