Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming will negatively impact tropical species

07.05.2008
Global warming is likely to reduce the health of tropical species, scientists from UCLA and the University of Washington report May 6 in Proceedings of the National Academy of Sciences.

At the same time, a little bit of warming may actually move certain organisms, particularly insects, in the high latitudes closer to their optimal temperature, the researchers say.

"In the tropics, most of the organisms we have studied, from insects to amphibians and reptiles, are already living at their optimal physiological temperatures," said Curtis Deutsch, UCLA assistant professor of atmospheric and oceanic sciences and co-author of the study. "When warming starts, they do less well as they move toward the hottest end of their comfort range. Even a modest increase in temperature appears rather large to them and negatively impacts their population growth rates."

Why should we be concerned with the fate of insects in the tropics?

"The biodiversity of the planet is concentrated in tropical climates, where there is a tremendous variety of species," Deutsch said. "This makes our finding that the impacts of global warming are going to be most detrimental to species in tropical climates all the more disturbing. In addition, what hurts the insects hurts the ecosystem. Insects carry out essential functions for humans and ecosystems — such as pollinating our crops and breaking down organic matter back into its nutrients so other organisms can use them. Insects are essential to the ecosystem."

At least for the short term, the impact of global warming will have opposing effects. In the tropics, warming will reduce insects' ability to reproduce; in the high latitudes, the ability of organisms to reproduce will increase slightly, Deutsch said. If warming continues, the insects in the high latitudes would eventually be adversely affected as well.

"Our results imply that in the absence of any adaptation or migration by these populations in the tropics, they will experience large declines in their population growth rate," Deutsch said. "This could lead to a fairly rapid population collapse, but organisms are adaptable; the question is, what will their response be? They could migrate toward the poles or toward higher elevations, for instance."

"We don't think this is restricted to insect species," Deutsch said. "Data on turtles, lizards, frogs and toads show patterns that are very similar to what we find for insects. They will do much worse in the tropics than in the high latitudes."

Scientists have measured in laboratories how sensitive different species are to changes in temperature. For insects, the data is comprehensive and includes information on how temperature affects the population growth rate for species, Deutsch said. He and his colleagues — who included Joshua Tewksbury, assistant professor of biology at the University of Washington, and Raymond Huey, professor of biology at the University of Washington — studied the data, then went to climate models and analyzed what the predicted temperature change in various regions implied about species' future growth rate.

According to climate predictions, more rapid rates of warming of the Earth's surface will occur in the higher latitudes, especially in the polar regions, than at the equator, Deutsch said.

"You would think a larger warming in Alaska would have a greater impact on the organisms living there than a much smaller increase in, say, Panama or Costa Rica," he said. "We found the opposite will be true. A 1-degree temperature change in Panama will not be felt the same way by an organism as a 1-degree temperature change in Alaska."

The range of temperature tolerance that an organism has is largely dependent on how much temperature variability it experiences. In the tropics, the amount of temperature variability is very small; there is little difference between summer and winter, while in Alaska, the seasons are dramatically different.

To live in their environments, organisms in the tropics should have a relatively narrow tolerance for temperature change, while in the high latitudes, organisms should be able to tolerate a much wider variation in temperature.

"The magnitude of the impact of global warming depends largely on what we do to slow it down," Deutsch said.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>