Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trouble in Paradise: Warming a Greater Danger to Tropical Species

07.05.2008
Polar bears fighting for survival in the face of a rapid decline of polar ice have made the Arctic a poster child for the negative effects of climate change. But new research shows that species living in the tropics likely face the greatest peril in a warmer world.

A team led by University of Washington scientists has found that while temperature changes will be much more extreme at high latitudes, tropical species have a far greater risk of extinction with warming of just a degree or two. That is because they are used to living within a much smaller temperature range to begin with, and once temperatures get beyond that range many species might not be able to cope.

"There's a strong relationship between your physiology and the climate you live in," said Joshua Tewksbury, a UW assistant professor of biology. "In the tropics many species appear to be living at or near their thermal optimum, a temperature that lets them thrive. But once temperature gets above the thermal optimum, fitness levels most likely decline quickly and there may not be much they can do about it."

Arctic species, by contrast, might experience temperatures ranging from subzero to a comparatively balmy 60 degrees Fahrenheit. They typically live at temperatures well below their thermal limit, and most will continue to do so even with climate change.

"Many tropical species can only tolerate a narrow range of temperatures because the climate they experience is pretty constant throughout the year," said Curtis Deutsch, an assistant professor of atmospheric and oceanic sciences at the University of California, Los Angeles. "Our calculations show that they will be harmed by rising temperatures more than would species in cold climates.

"Unfortunately, the tropics also hold the large majority of species on the planet," he said.

Tewksbury and Deutsch are lead authors of a paper detailing the research, published in the May 6 print edition of the Proceedings of the National Academy of Sciences. The work took place while Deutsch was a UW postdoctoral researcher in oceanography.

The scientists used daily and monthly global temperature records from 1950 through 2000, and added climate model projections from the Intergovernmental Panel on Climate Change for warming in the first years of the 21st century. They compared that information with data describing the relationship between temperatures and fitness for a variety of temperate and tropical insect species, as well as frogs, lizards and turtles. Fitness levels were measured by examining population growth rates in combination with physical performance.

"The direct effects of climate change on the organisms we studied appear to depend a lot more on the organisms' flexibility than on the amount of warming predicted for where they live," Tewksbury said. "The tropical species in our data were mostly thermal specialists, meaning that their current climate is nearly ideal and any temperature increases will spell trouble for them."

As temperatures fluctuate, organisms do what they can to adapt. Polar bears, for example, develop thick coats to protect them during harsh winters. Tropical species might protect themselves by staying out of direct sunlight in the heat of the day, or by burrowing into the soil.

However, since they already live so close to their critical high temperature, just a slight increase in air temperature can make staying out of the sun a futile exercise, and the warming might come too fast for creatures to adapt their physiologies to it, Tewksbury said.

Other authors of the paper are Raymond Huey, Kimberly Sheldon, David Haak and Paul Martin of the University of Washington and Cameron Ghalambor of Colorado State University. The research was funded in part by the National Science Foundation and the UW Program on Climate Change.

The work has indirect implications for agriculture in the tropics, where the bulk of the world's human population lives. The scientists plan further research to examine the effects of climate change, particularly hotter temperatures, on tropical crops and the people who depend on them.

"Our research focused only on the impact of changes in temperature, but warming also will alter rainfall patterns," Deutsch said. "These effects could be more important for many tropical organisms, such as plants, but they are harder to predict because hydrological cycle changes are not as well understood."

For more information, contact Tewksbury at (206) 616-2129, (206) 331-1893 (cell) or tewksjj@u.washington.edu; or Deutsch at (310) 825-0088 or cdeutsch@atmos.ucla.edu.

NOTE: A high-resolution image of a beetle in Ecuador's cloud forest, a species that could be challenged by climate change, is available from Vince Stricherz, vinces@u.washington.edu.

Vince Stricherz | newswise
Further information:
http://www.washington.edu
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>