Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trouble in Paradise: Warming a Greater Danger to Tropical Species

Polar bears fighting for survival in the face of a rapid decline of polar ice have made the Arctic a poster child for the negative effects of climate change. But new research shows that species living in the tropics likely face the greatest peril in a warmer world.

A team led by University of Washington scientists has found that while temperature changes will be much more extreme at high latitudes, tropical species have a far greater risk of extinction with warming of just a degree or two. That is because they are used to living within a much smaller temperature range to begin with, and once temperatures get beyond that range many species might not be able to cope.

"There's a strong relationship between your physiology and the climate you live in," said Joshua Tewksbury, a UW assistant professor of biology. "In the tropics many species appear to be living at or near their thermal optimum, a temperature that lets them thrive. But once temperature gets above the thermal optimum, fitness levels most likely decline quickly and there may not be much they can do about it."

Arctic species, by contrast, might experience temperatures ranging from subzero to a comparatively balmy 60 degrees Fahrenheit. They typically live at temperatures well below their thermal limit, and most will continue to do so even with climate change.

"Many tropical species can only tolerate a narrow range of temperatures because the climate they experience is pretty constant throughout the year," said Curtis Deutsch, an assistant professor of atmospheric and oceanic sciences at the University of California, Los Angeles. "Our calculations show that they will be harmed by rising temperatures more than would species in cold climates.

"Unfortunately, the tropics also hold the large majority of species on the planet," he said.

Tewksbury and Deutsch are lead authors of a paper detailing the research, published in the May 6 print edition of the Proceedings of the National Academy of Sciences. The work took place while Deutsch was a UW postdoctoral researcher in oceanography.

The scientists used daily and monthly global temperature records from 1950 through 2000, and added climate model projections from the Intergovernmental Panel on Climate Change for warming in the first years of the 21st century. They compared that information with data describing the relationship between temperatures and fitness for a variety of temperate and tropical insect species, as well as frogs, lizards and turtles. Fitness levels were measured by examining population growth rates in combination with physical performance.

"The direct effects of climate change on the organisms we studied appear to depend a lot more on the organisms' flexibility than on the amount of warming predicted for where they live," Tewksbury said. "The tropical species in our data were mostly thermal specialists, meaning that their current climate is nearly ideal and any temperature increases will spell trouble for them."

As temperatures fluctuate, organisms do what they can to adapt. Polar bears, for example, develop thick coats to protect them during harsh winters. Tropical species might protect themselves by staying out of direct sunlight in the heat of the day, or by burrowing into the soil.

However, since they already live so close to their critical high temperature, just a slight increase in air temperature can make staying out of the sun a futile exercise, and the warming might come too fast for creatures to adapt their physiologies to it, Tewksbury said.

Other authors of the paper are Raymond Huey, Kimberly Sheldon, David Haak and Paul Martin of the University of Washington and Cameron Ghalambor of Colorado State University. The research was funded in part by the National Science Foundation and the UW Program on Climate Change.

The work has indirect implications for agriculture in the tropics, where the bulk of the world's human population lives. The scientists plan further research to examine the effects of climate change, particularly hotter temperatures, on tropical crops and the people who depend on them.

"Our research focused only on the impact of changes in temperature, but warming also will alter rainfall patterns," Deutsch said. "These effects could be more important for many tropical organisms, such as plants, but they are harder to predict because hydrological cycle changes are not as well understood."

For more information, contact Tewksbury at (206) 616-2129, (206) 331-1893 (cell) or; or Deutsch at (310) 825-0088 or

NOTE: A high-resolution image of a beetle in Ecuador's cloud forest, a species that could be challenged by climate change, is available from Vince Stricherz,

Vince Stricherz | newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>