Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diatoms Discovered to Remove Phosphorus from Oceans

06.05.2008
Scientists at the Georgia Institute of Technology have discovered a new way that phosphorus is naturally removed from the oceans – its stored in diatoms.

The discovery opens up a new realm of research into an element that’s used for reproduction, energy storage and structural materials in every organism. Its understanding is vital to the continued quest to understand the growth of the oceans. The research appears in the May 2, 2008 edition of the journal Science.

Ellery Ingall, associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences, along with Ph.D. student Julia Diaz, collected organisms and sediments along an inlet near Vancouver Island in British Columbia. During their investigation on the boat, Diaz used a traditional optical microscope to discover that diatoms, microscopic organisms that live in oceans and damp surfaces, were storing blobs of very dense concentrations of phosphorus called polyphosphates.

“These polyphosphates have been missed in classic studies because they haven’t been recovered by the typical measurement techniques,” said Ingall. “No one measured or treated the samples because no one knew they were there – they didn’t even think to look for it.”

For a long time, scientists have been unable to account for the difference in the amount of phosphorus that’s in the oceans and the amount that’s washed in from rivers.

“We’re getting the initial clues as to how this phosphorus gets to the bottom of the oceans,” said Diaz. “These diatoms are sinking from the top to the bottom of the ocean, and as they’re sinking, they’re transporting the phosphorus in the form of intracellular polyphosphate.”

After making their initial discovery, the team made another. They went to Argonne National Laboratory near Chicago to delve deeper and found that some of the blobs were polyphosphate, some were a mineral known as apatite, and some were a transitional material between the two.

Now that they’ve proved a link between polyphosphate and apatite, they’re next step is to try and capture the chemical transition between the two by running controlled experiments in the lab.

David Terraso | newswise
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>