Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diatoms Discovered to Remove Phosphorus from Oceans

Scientists at the Georgia Institute of Technology have discovered a new way that phosphorus is naturally removed from the oceans – its stored in diatoms.

The discovery opens up a new realm of research into an element that’s used for reproduction, energy storage and structural materials in every organism. Its understanding is vital to the continued quest to understand the growth of the oceans. The research appears in the May 2, 2008 edition of the journal Science.

Ellery Ingall, associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences, along with Ph.D. student Julia Diaz, collected organisms and sediments along an inlet near Vancouver Island in British Columbia. During their investigation on the boat, Diaz used a traditional optical microscope to discover that diatoms, microscopic organisms that live in oceans and damp surfaces, were storing blobs of very dense concentrations of phosphorus called polyphosphates.

“These polyphosphates have been missed in classic studies because they haven’t been recovered by the typical measurement techniques,” said Ingall. “No one measured or treated the samples because no one knew they were there – they didn’t even think to look for it.”

For a long time, scientists have been unable to account for the difference in the amount of phosphorus that’s in the oceans and the amount that’s washed in from rivers.

“We’re getting the initial clues as to how this phosphorus gets to the bottom of the oceans,” said Diaz. “These diatoms are sinking from the top to the bottom of the ocean, and as they’re sinking, they’re transporting the phosphorus in the form of intracellular polyphosphate.”

After making their initial discovery, the team made another. They went to Argonne National Laboratory near Chicago to delve deeper and found that some of the blobs were polyphosphate, some were a mineral known as apatite, and some were a transitional material between the two.

Now that they’ve proved a link between polyphosphate and apatite, they’re next step is to try and capture the chemical transition between the two by running controlled experiments in the lab.

David Terraso | newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>