Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Oceanography Research pegs ID of red tide killer

05.05.2008
Bacteria gang up on algae, quashing red tide blooms

Researchers at Scripps Institution of Oceanography at UC San Diego have identified a potential “red tide killer.” Red tides and related phenomena in which microscopic algae accumulate rapidly in dense concentrations have been on the rise in recent years, causing hundreds of millions of dollars in worldwide losses to fisheries and beach tourism activities. Despite their wide-ranging impacts, such phenomena, more broadly referred to as “harmful algal blooms,” remain unpredictable in not only where they appear, but how long they persist.

New research at Scripps has identified a little-understood but common marine microbe as a red tide killer, and implicates the microbe in the termination of a red tide in Southern California waters in the summer of 2005.

While not all algal outbreaks are harmful, some blooms carry toxins that have been known to threaten marine ecosystems and even kill marine mammals, fish and birds.

Using a series of new approaches, Scripps Oceanography’s Xavier Mayali investigated the inner workings of a bloom of dinoflagellates, single-celled plankton, known by the species name Lingulodinium polyedrum. The techniques revealed that so-called Roseobacter-Clade Affiliated (“RCA cluster”) bacteria—several at a time—attacked individual dinoflagellate by attaching directly to the plankton’s cells, slowing their swimming speed and eventually killing them.

Using DNA evidence, Mayali matched the identity of the RCA bacterium in records of algal blooms around the world.

In fact, it turns out that RCA bacteria are present in temperate and polar waters worldwide. Mayali’s novel way of cultivating these organisms has now opened up a new world of inquiry to understand the ecological roles of these organisms. The first outcome of this achievement is the recognition of the bacterium’s potential in killing red-tide organisms.

“It’s possible that bacteria of this type play an important role in terminating algal blooms and regulating algal bloom dynamics in temperate marine waters all over the world,” said Mayali.

The research study, which was coauthored by Scripps Professors Peter Franks and Farooq Azam, is published in the May 1 edition of the journal Applied and Environmental Microbiology.

“Our understanding of harmful algal blooms and red tides has been fairly primitive. For the most part we don’t know how they start, for example,” said Franks, a professor of biological oceanography in the Integrative Oceanography Division at Scripps. “From a practical point of view, if these RCA bacteria really do kill dinoflagellates and potentially other harmful algae that form dense blooms, down the road there may be a possibility of using them to mitigate their harmful effects.”

The researchers based their results on experiments conducted with samples of a red tide collected off the Scripps Pier in 2005. Because RCA bacteria will not grow under traditional laboratory methods, Mayali developed his own techniques for identifying and tracking RCA through highly delicate “micromanipulation” processes involving washing and testing individual cells of Lingulodinium. He used molecular fluorescent tags to follow the bacteria’s numbers, eventually matching its DNA signature and sealing its identity.

“The work in the laboratory showed that the bacterium has to attach directly to the dinoflagellate to kill it,” said Mayali, “and we found similar dynamics in the natural bloom.”

Franks said he found it a bizarre concept of scale that Lingulodinium dinoflagellates, which at 25 to 30 microns in diameter are known to swim through the ocean with long flagella, or appendages, are attacked by bacteria that are about one micron in size and can’t swim.

“It’s somewhat shocking to think of something like three chipmunks attaching themselves to an elephant and taking it down,” said Franks.

While the RCA cluster’s role in the marine ecosystem is not known, Azam, a distinguished professor of marine microbiology in the Marine Biology Research Division at Scripps, said harmful algal blooms are an important problem and consideration must be given to the fact that red tide dinoflagellates don’t exist in isolation of other parts of the marine food web. Bacteria and other parts of the “microbial loop” feed on the organic matter released by the dinoflagellates and in turn the dinoflagellates are known to feed on other cells (including bacteria) when their nutrients run out.

Dinoflagellate interactions with highly abundant and genetically diverse bacteria in the sea have the potential to both enhance and suppress bloom intensity—but this important subject is only beginning to be explored.

“The newly identified role of RCA cluster is a good illustration of the need to understand the multifarious mechanisms by which microbes influence the functioning of the marine ecosystems,” Azam said.

“This type of discovery is helping us understand algal bloom dynamics and the interactions among the components of planktonic ecosystems in ways that we’d imagined but previously lacked evidence,” said Franks.

Mario Aguilera | EurekAlert!
Further information:
http://www.scripps.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>