Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming Affects World's Largest Freshwater Lake

05.05.2008
Lake Baikal in Siberia had been thought resistant to climate change

Russian and American scientists have discovered that the rising temperature of the world's largest lake, located in frigid Siberia, shows that this region is responding strongly to global warming.

Drawing on 60 years of long-term studies of Russia's Lake Baikal, Stephanie Hampton, an ecologist and deputy director of the National Center for Ecological Analysis and Synthesis (NCEAS) in Santa Barbara, Calif., and Marianne Moore, a biologist at Wellesley College in Wellesley, Mass., along with four other scientists, report their results on-line today in the journal Global Change Biology.

"Warming of this isolated but enormous lake is a clear signal that climate change has affected even the most remote corners of our planet," Hampton said.

In their paper, the scientists detail the effects of climate change on Lake Baikal--from warming of its vast waters to reorganization of its microscopic food web.

"The conclusions shown here for this enormous body of freshwater result from careful and repeated sampling over six decades," said Henry Gholz, program director for NCEAS at the National Science Foundation (NSF), which funded the research. "Thanks to the dedication of local scientists, who were also keen observers, coupled with modern synthetic approaches, we can now visualize and appreciate the far-reaching changes occurring in this lake."

Lake Baikal is the grand dame of lakes. In 1996, the United Nations Educational, Scientific and Cultural Organization (UNESCO) declared it a World Heritage site because of its biological diversity. It boasts 2500 plant and animal species, with most, including the freshwater seal, found nowhere else in the world.

The lake contains 20 percent of the world's freshwater, and it is large enough to hold all the water in the United States' Great Lakes. It is the world's deepest lake as well as its oldest; at 25 million years old, it predates the emergence of humans.

In more recent times, it was a dedicated group of humans who made this study possible.

"Our research relies on a 60-year data set, collected in Lake Baikal by three generations of a single family of Siberian scientists," Moore said. "In the 1940s, Mikhail Kozhov began collecting and analyzing water samples in anticipation that this lake could reveal much about how lakes in general function.

"Ultimately, his daughter Olga Kozhova continued the program, followed by her daughter, who is also a co-author of today's paper: Lyubov Izmest'eva."

The decades-long research effort survived the reign of Stalin, the fall of the Soviet Union, and other social and financial upheavals in the region.

Data collection continued through every season, in an environment where winter temperatures drop to -50 degrees F.

The data on Lake Baikal reveal "significant warming of surface waters and long-term changes in the food web of the world's largest, most ancient lake," write the researchers in their paper. "Increases in water temperature (1.21°C since 1946), chlorophyll a (300 percent since 1979), and an influential group of zooplankton grazers (335 percent since 1946) have important implications for nutrient cycling and food web dynamics."

The scientists conclude that the lake now joins other large lakes, including Superior, Tanganyika and Tahoe, in showing warming trends.

"But," they note, "temperature changes in Lake Baikal are particularly significant as a signal of long-term regional warming.

"This lake was expected to be among those most resistant to climate change, due to its tremendous volume and unique water circulation."

The research paper is the result of a collaboration involving six Siberian and American scientists, who were assisted by student translators from Wellesley College.

In addition to Hampton and Moore, the paper's contributors are Izmest'eva, director of the Scientific Research Institute of Biology, Irkutsk State University, Irkutsk, Russia; Stephen L. Katz, recently of the Northwest Fisheries Science Center, NOAA Fisheries, Seattle, Wash.; Brian Dennis of the departments of statistics and fish and wildlife resources, University of Idaho, Moscow, Idaho; and Eugene A. Silow of the Scientific Research Institute of Biology, Irkutsk State University, Irkutsk, Russia.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov/mynsf/
http://www.nsf.gov/news/news_summ.jsp?cntn_id=111511&org=olpa&from=news

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>