Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen Depletion: A New Form of Ocean Habitat Loss

05.05.2008
An international team of physical oceanographers including a researcher from Scripps Institution of Oceanography at UC San Diego has discovered that oxygen-poor regions of tropical oceans are expanding as the oceans warm, limiting the areas in which predatory fishes and other marine organisms can live or enter in search of food.

The new study is led by Lothar Stramma from the Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany, and is co-authored by Janet Sprintall, a physical oceanographer at Scripps Oceanography and others.

The researchers found through analysis of a database of ocean oxygen measurements that levels in tropical oceans at a depth of 300 to 700 meters (985 to 2,300 feet) have declined during the past 50 years. The ecological impacts of this increase could have substantial biological and economical consequences.

“We found the largest reduction in a depth of 300 to 700 meters (985 to 2,300 feet) in the tropical northeast Atlantic, whereas the changes in the eastern Indian Ocean were much less pronounced,” said Stramma. “Whether or not these observed changes in oxygen can be attributed to global warming alone is still unresolved. The reduction in oxygen may also be caused by natural processes on shorter time scales.”

Sprintall said the oxygen-poor areas have the potential to move into coastal areas via currents that flow from the mid-depth tropical oceans, where the oxygen changes were observed, and along the west coast of continents.

“The width of the low-oxygen zone is expanding deeper but also shoaling toward the ocean surface,” said Sprintall, a specialist in observing changes of fluxes in ocean properties such as heat distribution.

Sprintall contributed data to the study gathered during recent cruises undertaken as part of the Climate Variability and Predictability (CLIVAR) program, a long-running study operated by the World Climate Research Programme that seeks to understand climate through ocean-atmosphere interactions.

The study, “Expanding Oxygen-Minimum Zones in the Tropical Oceans,” appears in the May 2 edition of the journal Science. The research team includes Stramma, Sprintall, NOAA scientist Gregory Johnson, and Volker Mohrholz from the Institute for Baltic Sea Research in Warnemünde, Germany.

The team selected ocean regions for which they could obtain the greatest amount of data to document the decline in oxygen. Some of the more recent data came from oxygen sensors which have been added to about 150 of the profiling floats used in Argo, a worldwide network of sensors that track basic ocean conditions such as temperature and salinity. There are more than 3,000 Argo floats operating in the world’s oceans, and Sprintall said the quality of the data gathered by the Argo floats suggests that more units in the network should be outfitted with oxygen sensors.

Lisa Levin, a biological oceanographer at Scripps Oceanography who studies oxygen-minimum zones that intercept the seafloor, said an expansion of oxygen-minimum zones in the oceans could lead to diminished biodiversity and to the expanded distributions of organisms that have adapted to live in hypoxic, or oxygen-poor waters.

“I think it’s uncharted territory,” said Levin, who was not affiliated with the study. “Thicker oxygen minimum zones could affect nutrient cycling, predator-prey relationships and plankton migrations. Where the expanding oxygen-minimum zones impinge on continental margins, we could see huge ecosystem changes.”

The results of the study are an important milestone for the ongoing work of the new Collaborative Research Centre (SFB 754) “Climate – Biogeochemistry Interactions in the Tropical Ocean” funded by the German Research Foundation, which started its first phase in January 2008 in close cooperation with the University of Kiel. The SFB aims to better define the interactions between climate and biogeochemistry on a quantitative basis.

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Kim A. McDonald | newswise
Further information:
http://www.ucsdnews.ucsd.edu
http://scripps.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>