Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab of O helps protect endangered right whales with warning buoys in shipping lanes

30.04.2008
Endangered North Atlantic right whales are safer along Massachusetts Bay's busy shipping lanes this spring, thanks to a new system of smart buoys. The buoys recognize whales' distinctive calls and route the information to a public Web site and a marine warning system, giving ships the chance to avoid deadly collisions.

The 10-buoy Right Whale Listening Network (http://listenforwhales.org/) -- developed at the Cornell Lab of Ornithology and Woods Hole Oceanographic Institution -- is arriving barely in time for the beleaguered right whale. The species was hunted to the brink of extinction centuries ago, and now fewer than 400 of the 50-ton black giants remain. Collisions with ships are currently a leading cause of death.

Living 60 years or more, right whales skim tiny plankton from the shallow coastal waters of the Atlantic. Each winter and spring, many right whales congregate -- along with fin, minke and humpback whales -- in the Stellwagen Bank National Marine Sanctuary, 25 miles east of Boston Harbor, which bisects official shipping lanes used by some 1,500 container ships, tankers, cruise liners and fishing boats every year.

"For the first time, we can go online and hear up-to-the-minute voices of calling whales, and see where those whales are in the ocean off Boston and Cape Cod," said Christopher Clark, director of the Bioacoustics Research Program at the Lab of Ornithology. "Better yet, those calls immediately get put to use in the form of timely warnings to ship captains."

Each "auto-detection" buoy recognizes the right whale's call, automatically rings up recorders at the lab and uploads the sound. Analysts verify the call and then feed the signals to the listening network's Web site and to the Northeast U.S. Right Whale Sighting Advisory System, operated by the National Oceanic and Atmospheric Administration (NOAA).

The network of buoys is strategically placed between inbound and outbound shipping lanes, and each buoy listens in a 5-mile radius, providing information on where collision risks are highest. To help protect whales when they are quiet, alerts remain in effect around a buoy for 24 hours after a call is detected.

The buoy system was installed to reduce impacts by ships traveling to and from a new liquefied natural gas terminal, built last year by Northeast Gateway Deepwater Port in Massachusetts Bay, offshore of Boston. NOAA officials mandated that the company take measures to avoid collisions between right whales and the terminal's 90,000-ton supply tankers.

Under a $47 million contract with the company, the Lab of Ornithology will operate the buoy array over the terminal's 40-year expected lifetime. Liquefied natural gas tankers must now slow to 10 knots in response to buoy alerts and post lookouts for whales and sea turtles. Clark hopes the reduced speeds from tankers will set a precedent for other ships, which are not required to slow down.

Clark has spent 30 years developing this idea from basic, exploratory science into a real-world application.

"Scientific studies show that even the deaths of one or two breeding females each year could lead to the population's extinction," Clark said. "If all ships slow down for whales, it could make a real difference."

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>