Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab of O helps protect endangered right whales with warning buoys in shipping lanes

30.04.2008
Endangered North Atlantic right whales are safer along Massachusetts Bay's busy shipping lanes this spring, thanks to a new system of smart buoys. The buoys recognize whales' distinctive calls and route the information to a public Web site and a marine warning system, giving ships the chance to avoid deadly collisions.

The 10-buoy Right Whale Listening Network (http://listenforwhales.org/) -- developed at the Cornell Lab of Ornithology and Woods Hole Oceanographic Institution -- is arriving barely in time for the beleaguered right whale. The species was hunted to the brink of extinction centuries ago, and now fewer than 400 of the 50-ton black giants remain. Collisions with ships are currently a leading cause of death.

Living 60 years or more, right whales skim tiny plankton from the shallow coastal waters of the Atlantic. Each winter and spring, many right whales congregate -- along with fin, minke and humpback whales -- in the Stellwagen Bank National Marine Sanctuary, 25 miles east of Boston Harbor, which bisects official shipping lanes used by some 1,500 container ships, tankers, cruise liners and fishing boats every year.

"For the first time, we can go online and hear up-to-the-minute voices of calling whales, and see where those whales are in the ocean off Boston and Cape Cod," said Christopher Clark, director of the Bioacoustics Research Program at the Lab of Ornithology. "Better yet, those calls immediately get put to use in the form of timely warnings to ship captains."

Each "auto-detection" buoy recognizes the right whale's call, automatically rings up recorders at the lab and uploads the sound. Analysts verify the call and then feed the signals to the listening network's Web site and to the Northeast U.S. Right Whale Sighting Advisory System, operated by the National Oceanic and Atmospheric Administration (NOAA).

The network of buoys is strategically placed between inbound and outbound shipping lanes, and each buoy listens in a 5-mile radius, providing information on where collision risks are highest. To help protect whales when they are quiet, alerts remain in effect around a buoy for 24 hours after a call is detected.

The buoy system was installed to reduce impacts by ships traveling to and from a new liquefied natural gas terminal, built last year by Northeast Gateway Deepwater Port in Massachusetts Bay, offshore of Boston. NOAA officials mandated that the company take measures to avoid collisions between right whales and the terminal's 90,000-ton supply tankers.

Under a $47 million contract with the company, the Lab of Ornithology will operate the buoy array over the terminal's 40-year expected lifetime. Liquefied natural gas tankers must now slow to 10 knots in response to buoy alerts and post lookouts for whales and sea turtles. Clark hopes the reduced speeds from tankers will set a precedent for other ships, which are not required to slow down.

Clark has spent 30 years developing this idea from basic, exploratory science into a real-world application.

"Scientific studies show that even the deaths of one or two breeding females each year could lead to the population's extinction," Clark said. "If all ships slow down for whales, it could make a real difference."

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>