Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injecting Sulfate Particles into Stratosphere Could Have Drastic Impact on Earth's Ozone Layer

28.04.2008
Much-discussed climate change mitigation strategy may do more harm than good

A much-discussed idea to offset global warming by injecting sulfate particles into the stratosphere would have a drastic impact on Earth's protective ozone layer, new research concludes.

The study, led by Simone Tilmes of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., warns that such an approach would delay the recovery of the Antarctic ozone hole by decades and cause significant ozone loss over the Arctic.

The study results are published today in the journal Science Express. The research was funded by the National Science Foundation (NSF), NCAR's principal sponsor, as well as by NASA and other agencies.

"Our research indicates that trying to artificially cool off the planet may be a perilous endeavor," Tilmes says. "While climate change is a major threat, this solution could create severe problems for society."

"The challenges of global warming mitigation are extremely complex," said Cliff Jacobs, program director in NSF's Division of Atmospheric Sciences. "Continued investment in basic research will allow the most cost-effective solutions--and those of the most benefit to society--to be found."

Climate scientists, concerned that society is not taking sufficient action to prevent significant changes in climate, have studied various "geoengineering" proposals to cool the planet and mitigate the most severe impacts of global warming.

One of the most-discussed ideas is to regularly inject large amounts of sun-blocking sulfate particles into the stratosphere. The goal would be to cool the climate, much as sulfur particles from large volcanic eruptions have cooling impacts.

Since volcanic eruptions temporarily thin the ozone layer in the stratosphere, Tilmes and her colleagues looked into the potential impact of geoengineering plans on ozone.

The new study concluded that, over the next few decades, artificial injections of sulfates could destroy between one-fourth and three-fourths of the ozone layer above the Arctic. This could affect a large part of the Northern Hemisphere because of atmospheric circulation patterns.

The sulfates would also delay the expected recovery of the ozone hole over the Antarctic by about 30 to 70 years, or until at least the last decade of the twentieth century, the authors warn. The ozone layer is critical for life on Earth because it blocks dangerous ultraviolet radiation from the Sun.

"This study highlights another connection between global warming and ozone depletion, which had been thought of as separate problems but are now increasingly recognized to be coupled in subtle, yet profoundly important, ways," says Science Express paper co-author Ross Salawitch of the University of Maryland.

To determine the relationship between sulfates and ozone loss, the authors used a combination of measurements and computer simulations.

They then estimated future ozone loss by looking at two geoengineering schemes--one that would use volcanic-sized sulfates, and a second that would use much smaller injections.

The study found that injections of small particles over the next 20 years could reduce the ozone layer by 100 to 230 Dobson Units. The average thickness of the ozone layer in the Northern Hemisphere is 300 Dobson Units. (A Dobson Unit is a common measure of ozone.)

For large particles, the loss would range from 70 to 150 Dobson Units. The larger figure is correlated with colder winters.

In the Antarctic, the sulfate injections would not significantly reduce the thickness of the already depleted ozone layer. Instead, they would significantly delay the recovery of the ozone hole.

The authors caution that the actual impacts on ozone could be somewhat different than estimated if atmospheric changes led to unusually warm or cold polar winters. They also warn that a geoengineering project could lead to even more severe ozone loss if a volcanic eruption took place at the same time.

"Clearly much more research needs to be conducted to determine the full implications of geoengineering before we may discuss seriously the injection of sulfate aerosols into the stratosphere," says co-author Rolf Müller of the Jülich Research Center in Germany.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>