Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injecting Sulfate Particles into Stratosphere Could Have Drastic Impact on Earth's Ozone Layer

28.04.2008
Much-discussed climate change mitigation strategy may do more harm than good

A much-discussed idea to offset global warming by injecting sulfate particles into the stratosphere would have a drastic impact on Earth's protective ozone layer, new research concludes.

The study, led by Simone Tilmes of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., warns that such an approach would delay the recovery of the Antarctic ozone hole by decades and cause significant ozone loss over the Arctic.

The study results are published today in the journal Science Express. The research was funded by the National Science Foundation (NSF), NCAR's principal sponsor, as well as by NASA and other agencies.

"Our research indicates that trying to artificially cool off the planet may be a perilous endeavor," Tilmes says. "While climate change is a major threat, this solution could create severe problems for society."

"The challenges of global warming mitigation are extremely complex," said Cliff Jacobs, program director in NSF's Division of Atmospheric Sciences. "Continued investment in basic research will allow the most cost-effective solutions--and those of the most benefit to society--to be found."

Climate scientists, concerned that society is not taking sufficient action to prevent significant changes in climate, have studied various "geoengineering" proposals to cool the planet and mitigate the most severe impacts of global warming.

One of the most-discussed ideas is to regularly inject large amounts of sun-blocking sulfate particles into the stratosphere. The goal would be to cool the climate, much as sulfur particles from large volcanic eruptions have cooling impacts.

Since volcanic eruptions temporarily thin the ozone layer in the stratosphere, Tilmes and her colleagues looked into the potential impact of geoengineering plans on ozone.

The new study concluded that, over the next few decades, artificial injections of sulfates could destroy between one-fourth and three-fourths of the ozone layer above the Arctic. This could affect a large part of the Northern Hemisphere because of atmospheric circulation patterns.

The sulfates would also delay the expected recovery of the ozone hole over the Antarctic by about 30 to 70 years, or until at least the last decade of the twentieth century, the authors warn. The ozone layer is critical for life on Earth because it blocks dangerous ultraviolet radiation from the Sun.

"This study highlights another connection between global warming and ozone depletion, which had been thought of as separate problems but are now increasingly recognized to be coupled in subtle, yet profoundly important, ways," says Science Express paper co-author Ross Salawitch of the University of Maryland.

To determine the relationship between sulfates and ozone loss, the authors used a combination of measurements and computer simulations.

They then estimated future ozone loss by looking at two geoengineering schemes--one that would use volcanic-sized sulfates, and a second that would use much smaller injections.

The study found that injections of small particles over the next 20 years could reduce the ozone layer by 100 to 230 Dobson Units. The average thickness of the ozone layer in the Northern Hemisphere is 300 Dobson Units. (A Dobson Unit is a common measure of ozone.)

For large particles, the loss would range from 70 to 150 Dobson Units. The larger figure is correlated with colder winters.

In the Antarctic, the sulfate injections would not significantly reduce the thickness of the already depleted ozone layer. Instead, they would significantly delay the recovery of the ozone hole.

The authors caution that the actual impacts on ozone could be somewhat different than estimated if atmospheric changes led to unusually warm or cold polar winters. They also warn that a geoengineering project could lead to even more severe ozone loss if a volcanic eruption took place at the same time.

"Clearly much more research needs to be conducted to determine the full implications of geoengineering before we may discuss seriously the injection of sulfate aerosols into the stratosphere," says co-author Rolf Müller of the Jülich Research Center in Germany.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>