Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better regional monitoring of CO2 needed as global levels continue rising

28.04.2008
More CO2 observatories needed to quantify progress in emission reductions, say researchers

Monitoring Earth's rising greenhouse gas levels will require a global data collection network 10 times larger than the one currently in place in order to quantify regional progress in emission reductions, according to a new research commentary by University of Colorado and NOAA researchers appearing in the April 25 issue of Science.

The authors, CU-Boulder Research Associate Melinda Marquis and National Oceanic and Atmospheric Administration scientist Pieter Tans, said with atmospheric carbon dioxide concentrations now at 385 parts per million and rising, the need for improved regional greenhouse gas measurements is critical. While the current observation network can measure CO2 fluxes on a continental scale, charting regional emissions where significant mitigation efforts are underway -- like California, New England and European countries -- requires a more densely populated network, they said.

"The question is whether scientists in the United States and around the world have what they need to monitor regional fluxes in atmospheric carbon dioxide," said Marquis, a scientist at the Cooperative Institute for Research in Environmental Sciences, a joint institute of CU-Boulder and NOAA. "Right now, they don't."

While CO2 levels are climbing by 2 parts per million annually -- a rate expected to increase as China and India continue to industrialize -- effective regional CO2 monitoring strategies are virtually nonexistent, she said. Scientists are limited in their ability to distinguish between distant and nearby carbon sources and "sinks," or storage areas, for example, by the accuracy of atmospheric transport models that reflect details of terrain, winds and the mixing of gases near observation sites.

"We are in uncharted territory as far as knowing how safe these high CO2 levels are for the Earth," she said. "Instead of tackling a very complex challenge with the equivalent of Magellan's maps, we need to use the equivalent of Google Earth."

Marquis and Tans propose increasing the number of global carbon measurement sites from about 100 to 1,000, which would decrease the uncertainty in computer models and help scientists better quantify changes. "With existing tools we could gather large amounts of additional CO2 data for a relatively small investment," said Marquis. "The next step is to muster the political will to fund these efforts."

Scientists currently sample CO2 using air flasks, in-situ measurements from transmitter towers up to 2,000 feet high and via aircraft sensors. The authors proposed putting additional CO2 sensors on existing and new transmitter towers that can gather large volumes of climate data. While Europe and the United States have small networks of tall transmitter towers equipped with CO2 instruments, such towers are rare on the rest of the planet, she said.

Satellites queued for launch in the next few years to help monitor atmospheric CO2 levels include the Orbiting Carbon Observatory and the Greenhouse Gases Observing Satellite, said Marquis. The satellites will augment ground-based and aircraft measurements charting terrestrial photosynthesis, carbon sinks, CO2 respiration sources, ocean-atmosphere gas exchanges and CO2 emissions from wildfires.

Mandated by the U.N. Framework Convention on Climate Change in 1994, national emissions inventories for each country are based primarily on economic statistics to estimate greenhouse gases entering and leaving the atmosphere, said the authors. Such inventories are "reasonably accurate" for estimating atmospheric CO2 from burning fossil fuels in developed countries.

But they are less accurate for other sources of CO2, like deforestation, and for emissions of other greenhouse gases, like methane, which is emitted as a result of rice farming, cattle ranching and natural wetlands, said the authors.

There is a growing need to measure the effectiveness of particular mitigation efforts by states or regions involved in pollution caps, auto emission reduction campaigns and intensive tree-planting efforts, Marquis said. The Western Climate Initiative, for example -- a consortium of seven western U.S. states and British Columbia -- set a goal last year of reducing greenhouse gas emissions by 15 percent as of 2020.

Precise regional CO2 measurements also could help chart the accuracy of carbon trading systems involving "credits" and "offsets" now in use in various countries around the world, said Marquis. In such systems, companies exceeding CO2 emission caps can buy carbon credits from companies under the caps, and groups or companies can buy voluntary carbon offsets to compensate for personal lifestyle choices, such as airline travel.

"Independent verification through regional CO2 monitoring could help determine whether carbon credits or offsets being bought or sold are of value," Marquis said.

Melinda Marquis | EurekAlert!
Further information:
http://www.colorado.edu
http://www.colorado.edu/news/podcasts/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>