Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees may contribute to ozone problem

26.06.2002


Trees may not actually commit suicide, but certain species do produce pollutants that hamper their own growth while contributing to global climate changes and causing harm to other life forms, contend two Texas A&M University researchers.



Renyi Zhang, an atmospheric chemist, is studying one such substance, isoprene, given off by oak trees and leading to increased ozone in our atmosphere. Working under a $300,000 grant from the National Science Foundation, Zhang and chemistry professor Simon North have taken on the challenge of unraveling the more than 1,000 reactions that transform organically released isoprene into toxic atmospheric pollutants.

"Air pollution is probably one of the most serious problems facing humankind in the 21st century," said Zhang, a professor in the College of Geosciences. "And certainly, much of that pollution results from human activities. But most people are not aware of the role played by chemical reactions which change substances produced by biogenic species into harmful airborne pollutants.


"Isoprene - C5H8 - is released by the respiration of oak trees and is the second-most abundant naturally produced hydrocarbon (after methane) in our atmosphere," he continued.

"After a complicated series of chemical reactions, isoprene facilitates ozone production, so increased isoprene means more ozone in the air."

Ozone in the upper atmosphere blocks out harmful ultraviolet radiation from the sun, Zhang explained, but nearer the ground, it traps infrared radiation reflected back up from Earth and contributes to heating the air near the planet’s surface, the so-called "Greenhouse Effect." So, more ozone can mean rising temperatures near ground-level, contributing to global warming.

"Although near-ground ozone has some beneficial effects, providing excited oxygen atoms needed to produce the free OH radicals that help to bind other chemicals like sulfur and cleanse them from the atmosphere, excess ozone proves harmful to the health of humans and plants," Zhang said. "For example, too much ozone can retard tree growth or even kill trees. And if too many trees die, there will be more CO2 in the air, further trapping heat and raising the temperature of the planet."

Zhang and North are studying isoprene oxidation related to oak trees in the Houston area, where ozone is contributing to increasing air pollution. They are seeking to understand the critical reactions out of the 1,000 in the isoprene to ozone chain in order to find ways to abate air pollution and allow trees to continue their life-cycle without increasing environmental damage.

Zhang will be using laboratory apparatus to study isoprene using chemical ionization mass spectrometry, while North will look at the chemical process using laser-induced fluorescence. Both researchers also employ methods of quantum chemical calculation to analyze their experimental results. In addition to the NSF grant, their work is being funded by the Welch Foundation, the Texas Advanced Research Program (Chemistry) and the U.S. Department of Energy (DOE).

"The isoprene chain reaction is very complicated - in fact, it’s been studied for over 30 years without significant results with regard to fundamental details," said Zhang. "Dr. North and I seeking to discover the direction in which reaction pathways proceed. If we can fully understand the critical steps in the reaction, maybe we can determine where best to intervene in the process to keep both our oak trees and ourselves healthier."


Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Renyi Zhang, 979-845-7656, zhang@ariel.met.tamu.edu

Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>