Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees may contribute to ozone problem

26.06.2002


Trees may not actually commit suicide, but certain species do produce pollutants that hamper their own growth while contributing to global climate changes and causing harm to other life forms, contend two Texas A&M University researchers.



Renyi Zhang, an atmospheric chemist, is studying one such substance, isoprene, given off by oak trees and leading to increased ozone in our atmosphere. Working under a $300,000 grant from the National Science Foundation, Zhang and chemistry professor Simon North have taken on the challenge of unraveling the more than 1,000 reactions that transform organically released isoprene into toxic atmospheric pollutants.

"Air pollution is probably one of the most serious problems facing humankind in the 21st century," said Zhang, a professor in the College of Geosciences. "And certainly, much of that pollution results from human activities. But most people are not aware of the role played by chemical reactions which change substances produced by biogenic species into harmful airborne pollutants.


"Isoprene - C5H8 - is released by the respiration of oak trees and is the second-most abundant naturally produced hydrocarbon (after methane) in our atmosphere," he continued.

"After a complicated series of chemical reactions, isoprene facilitates ozone production, so increased isoprene means more ozone in the air."

Ozone in the upper atmosphere blocks out harmful ultraviolet radiation from the sun, Zhang explained, but nearer the ground, it traps infrared radiation reflected back up from Earth and contributes to heating the air near the planet’s surface, the so-called "Greenhouse Effect." So, more ozone can mean rising temperatures near ground-level, contributing to global warming.

"Although near-ground ozone has some beneficial effects, providing excited oxygen atoms needed to produce the free OH radicals that help to bind other chemicals like sulfur and cleanse them from the atmosphere, excess ozone proves harmful to the health of humans and plants," Zhang said. "For example, too much ozone can retard tree growth or even kill trees. And if too many trees die, there will be more CO2 in the air, further trapping heat and raising the temperature of the planet."

Zhang and North are studying isoprene oxidation related to oak trees in the Houston area, where ozone is contributing to increasing air pollution. They are seeking to understand the critical reactions out of the 1,000 in the isoprene to ozone chain in order to find ways to abate air pollution and allow trees to continue their life-cycle without increasing environmental damage.

Zhang will be using laboratory apparatus to study isoprene using chemical ionization mass spectrometry, while North will look at the chemical process using laser-induced fluorescence. Both researchers also employ methods of quantum chemical calculation to analyze their experimental results. In addition to the NSF grant, their work is being funded by the Welch Foundation, the Texas Advanced Research Program (Chemistry) and the U.S. Department of Energy (DOE).

"The isoprene chain reaction is very complicated - in fact, it’s been studied for over 30 years without significant results with regard to fundamental details," said Zhang. "Dr. North and I seeking to discover the direction in which reaction pathways proceed. If we can fully understand the critical steps in the reaction, maybe we can determine where best to intervene in the process to keep both our oak trees and ourselves healthier."


Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Renyi Zhang, 979-845-7656, zhang@ariel.met.tamu.edu

Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>