Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Certain Metals Repel Sharks from Fishing Gear?

24.04.2008
Reducing bycatch could save millions of animals, reduce fishing costs

Sharks in captivity avoid metals that react with seawater to produce an electric field, a behavior that may help fishery biologists develop a strategy to reduce the bycatch of sharks in longline gear.

Shark bycatch is an increasing priority worldwide given diminished populations of many shark species, and because sharks compete with target species for baited lines, reducing fishing efficiency and increasing operating costs.

A recent study by NOAA scientists and colleagues on captive juvenile sandbar sharks showed the presence of an electropositive alloy, in this case palladium neodymium, clearly altered the swimming patterns of individual animals and temporarily deterred feeding in groups of sharks. Rare earth metals have previously been reported to deter spiny dogfish from attacking bait due to interactions with the shark’s electroreceptive system, which detects weak electric fields including those generated by their prey. Electric fields generated by electropositive alloys are believed to deter or repel sharks by overloading their sensory systems.

"Individual sandbar sharks would generally not approach the metal ingots closer than about 24 inches, nor attack pieces of cut bait suspended within approximately 12 inches,” said Richard Brill, a research scientist at NOAA’s Northeast Fisheries Science Center and head of the Cooperative Marine Education and Research (CMER) Program at the Virginia Institute of Marine Science. “This study clearly shows the alloy has the potential to repel sharks from pelagic longline fishing gear so they are not caught as bycatch, but the optimal size and shape of the alloy and other factors needs to be determined. This is a promising step.”

Up to now, electronic devices capable of repelling sharks have been large and not practical for use on longline fishing gear. The current project was undertaken to determine if small ingots of a relatively inexpensive electropositive alloy were repulsive to sharks under controlled laboratory conditions. If repulsion occurs consistently in the lab, the next step would be to conduct field trials.

Brill says juvenile sandbar sharks were used in the study because they are readily available in the estuaries along Virginia’s coast, do well in captivity, feed easily, and their constant forward motion makes it easy to measure changes in their swimming patterns. “They are good models for the species of sharks that are a significant problem in pelagic or open ocean longline fisheries worldwide.”

An estimated 11 to 13 million sharks are caught worldwide as bycatch each year, sometimes more than the targeted fish species. Sharks, part of the taxonomic group known as elasmobranchs which also includes skates and rays, generally have slow growth and reproductive rates and late sexual maturity. These factors result in an inability of shark populations to support high rates of fishing mortality, or slow population recovery. There is concern among scientists and fishery resource managers that severe reductions in elasmobranch populations could restructure marine ecosystems.

The sandbar shark, Carcharhinus plumbeus, is one of the largest coastal sharks in the world and can reach lengths of eight feet and weigh as much as 200 pounds. Sandbar sharks are usually found in shallow coastal waters including bays and estuaries in tropical and temperate waters around the world. In the western Atlantic Ocean they range from Massachusetts to Brazil, with the waters of the lower Chesapeake Bay considered a major nursery ground. Humans are their main predator.

“Our results were very promising but need further study,” Brill said. “The alloy we used, palladium neodymium, appears to be a good alternative to more expensive metals. It is also machinable and is reasonably resistant to corrosion in seawater. How long the metal will last before corroding and how long it will repel sharks in the field, however, needs to be determined.”

The lab experiments were conducted at the Virginia Institute of Marine Science using juvenile sand sharks up to five years old caught in surrounding waters and brought to an outdoor holding tank.

In addition to Brill, the study included scientists and students from Indiana University, Bangor University in Wales, Hampton University in Virginia, the University of Hawaii, and the research firm Shark Defense LLC of Oak Ridge, NJ, which develops shark repellents. Principal funding was provided by the Pacific Islands Fisheries Science Center of NOAA’s National Marine Fisheries Service in Honolulu, with logistical support from the VIMS Eastern Shore Laboratory.

This study by Brill and colleagues is among the first to rigorously test the use of rare earth materials on repelling elasmobranchs, and supports a recent study using metal alloys to repel spiny dogfish conducted by NOAA researchers in Oregon.

Results of the sandbar shark study were presented at a NOAA-sponsored shark deterrent workshop in Boston earlier this month.

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>