Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon studies how climate change impacts food production

23.04.2008
Transportation impacts climate

The old adage, “We are what we eat,’’ may be the latest recipe for success when it comes to curbing the perils of global climate warming. Despite the recent popular attention to the distance that food travels from farm to plate, aka “food miles,” Carnegie Mellon researchers Christopher L. Weber and H. Scott Matthews argue in an upcoming article in the prestigious Environmental Science & Technology journal that it is dietary choice, not food miles, which most determines a household’s food-related climate impacts.

“Our analysis shows that despite all the attention given to food miles, the distance that food travels is only around 11% of the average American household’s food-related greenhouse gas emissions,’’ said Weber, a research professor in Carnegie Mellon’s department of civil and environmental engineering and engineering and public policy.

The researchers report that fruit, vegetables, meat and milk produced closer to home rack up fewer petroleum-based transport miles than foods trucked cross country to your table. Yet despite the large distances involved—the average distance traveled for food in the U.S. is estimated at 4,000-5,000 miles —the large non-energy based greenhouse gas emissions associated with producing food make food production matter much more than distance traveled.

The authors suggest that eating less red meat and/or dairy products may be a more effective way for concerned citizens to lower their food-related climate impacts. They estimate that shifting to an entirely local diet would reduce the equivalent greenhouse gas emissions as driving 1,000 miles, while changing only one day per week’s meat and dairy-based calories to chicken, fish, or vegetables would have about the same impact. Shifting entirely from an average American diet to a vegetable-based one would reduce the same emissions as 8,000 miles driven per year.

“Where you get your food from is a relevant factor in family food decisions, but what you are eating - and the processes needed to make it - is much more important from a climate change perspective,’’ said Matthews, associate professor of civil and environmental engineering and engineering and public policy at Carnegie Mellon.

About Carnegie Mellon: Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business and public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 144-acre campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>