Carnegie Mellon studies how climate change impacts food production

The old adage, “We are what we eat,’’ may be the latest recipe for success when it comes to curbing the perils of global climate warming. Despite the recent popular attention to the distance that food travels from farm to plate, aka “food miles,” Carnegie Mellon researchers Christopher L. Weber and H. Scott Matthews argue in an upcoming article in the prestigious Environmental Science & Technology journal that it is dietary choice, not food miles, which most determines a household’s food-related climate impacts.

“Our analysis shows that despite all the attention given to food miles, the distance that food travels is only around 11% of the average American household’s food-related greenhouse gas emissions,’’ said Weber, a research professor in Carnegie Mellon’s department of civil and environmental engineering and engineering and public policy.

The researchers report that fruit, vegetables, meat and milk produced closer to home rack up fewer petroleum-based transport miles than foods trucked cross country to your table. Yet despite the large distances involved—the average distance traveled for food in the U.S. is estimated at 4,000-5,000 miles —the large non-energy based greenhouse gas emissions associated with producing food make food production matter much more than distance traveled.

The authors suggest that eating less red meat and/or dairy products may be a more effective way for concerned citizens to lower their food-related climate impacts. They estimate that shifting to an entirely local diet would reduce the equivalent greenhouse gas emissions as driving 1,000 miles, while changing only one day per week’s meat and dairy-based calories to chicken, fish, or vegetables would have about the same impact. Shifting entirely from an average American diet to a vegetable-based one would reduce the same emissions as 8,000 miles driven per year.

“Where you get your food from is a relevant factor in family food decisions, but what you are eating – and the processes needed to make it – is much more important from a climate change perspective,’’ said Matthews, associate professor of civil and environmental engineering and engineering and public policy at Carnegie Mellon.

About Carnegie Mellon: Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business and public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 144-acre campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts.

Media Contact

Chriss Swaney EurekAlert!

More Information:

http://www.cmu.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Results for control of pollutants in water

Brazilian scientists tested a simple and sustainable method for monitoring and degrading a mixture of polycyclic aromatic hydrocarbons, compounds present in fossil fuels and industrial waste. An article published in the journal Catalysis…

A tandem approach for better solar cells

Perovskite-based solar cells were first proved in 2009 to have excellent light-absorbing properties of methylammonium lead bromide and methylammonium lead iodide, collectively referred to as lead halide perovskites or, more…

The behavior of ant queens is shaped by their social environment

Specialization of ant queens as mere egg-layers is reversible / Queen behavioral specialization is initiated and maintained by the presence of workers. The queens in colonies of social insects, such…

Partners & Sponsors