Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon studies how climate change impacts food production

23.04.2008
Transportation impacts climate

The old adage, “We are what we eat,’’ may be the latest recipe for success when it comes to curbing the perils of global climate warming. Despite the recent popular attention to the distance that food travels from farm to plate, aka “food miles,” Carnegie Mellon researchers Christopher L. Weber and H. Scott Matthews argue in an upcoming article in the prestigious Environmental Science & Technology journal that it is dietary choice, not food miles, which most determines a household’s food-related climate impacts.

“Our analysis shows that despite all the attention given to food miles, the distance that food travels is only around 11% of the average American household’s food-related greenhouse gas emissions,’’ said Weber, a research professor in Carnegie Mellon’s department of civil and environmental engineering and engineering and public policy.

The researchers report that fruit, vegetables, meat and milk produced closer to home rack up fewer petroleum-based transport miles than foods trucked cross country to your table. Yet despite the large distances involved—the average distance traveled for food in the U.S. is estimated at 4,000-5,000 miles —the large non-energy based greenhouse gas emissions associated with producing food make food production matter much more than distance traveled.

The authors suggest that eating less red meat and/or dairy products may be a more effective way for concerned citizens to lower their food-related climate impacts. They estimate that shifting to an entirely local diet would reduce the equivalent greenhouse gas emissions as driving 1,000 miles, while changing only one day per week’s meat and dairy-based calories to chicken, fish, or vegetables would have about the same impact. Shifting entirely from an average American diet to a vegetable-based one would reduce the same emissions as 8,000 miles driven per year.

“Where you get your food from is a relevant factor in family food decisions, but what you are eating - and the processes needed to make it - is much more important from a climate change perspective,’’ said Matthews, associate professor of civil and environmental engineering and engineering and public policy at Carnegie Mellon.

About Carnegie Mellon: Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business and public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 144-acre campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>