Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 1930s semi goes green

23.04.2008
Three million of them were built; they stimulated a boom in employment and turned a nation of shop keepers into a nation of home owners.

The 1930s semi is an icon of its age but 80 years on it is about to undergo a green revolution.

Experts at The University of Nottingham together with the energy company E.ON have been granted special planning permission to build an original 1930s property. The house will be used to assess how to make best use of natural resources such as the sun, wind and rain, as well as for trialling the effectiveness of new carbon energy reducing technologies and materials.

The house will be built on University Park as is part of the School of Built Environment's Creative Energy Homes Project. It is one of six eco-homes being constructed as part of a prestigious study to stimulate sustainable design ideas and promote new ways of providing affordable, environmentally sustainable housing.

Dr Mark Gillott, research and project manager for Creative Energy Homes said: “The E.ON Research House project is an important addition to our site. 21 million homes in England (86% of the current stock) will still be in use by 2050. It is therefore vitally important that we identify and research technologies aimed at reducing the energy consumption associated with existing homes, these are issues that the vast majority of us can identify with.”

Construction of E.ON UK's 2016 research house is expected to be completed in August this year.

Once built the 1930s replica will be upgraded in several stages over three years to meet the highest green building requirements.

The central element of the design is a lightweight extension built from modules which will have a roof positioned to maximise the potential of solar panels. Low carbon technology will also be used to generate and manage energy within the house. The additional living space this provides could be used as additional work or family areas.

Reshaping today's 1930s housing stock for 21st century sustainable living will be a huge task. But Dave Clarke, Head of Research and Development at E.ON UK said: “Homes are big contributors to the causes of climate change, as they currently account for almost a third of the carbon dioxide emitted in the UK. The average house emits enough carbon to fill six hot air balloons full of CO2 in a year.

“Even with the Government's target for all new homes to be zero carbon from 2016, we'll have to retro-fit low carbon measure to existing homes in order to significantly reduce our carbon emissions.”

Dwellings in the UK account for approximately 28% of the UK total of carbon dioxide emissions through the burning of fossil fuel for heating, lights and appliances. This includes combustion on the premises, mainly natural gas for heating and cooking, and combustion in power stations to produce electricity for homes. Space heating accounts for 57%; water heating a further 25%; cooking 5% and lights and appliances 13%. The demand for energy to run heating/hot water systems and other home appliances such as refrigerators, cookers, lighting, etc is expected to be 13% higher in 2010 than it was in 1990.

As part of the project students will live in the house to assess the effectiveness of each stage in the eco-upgrade and monitoring equipment will be installed to measure the effectiveness of each of the upgrades.

Four of the new Creative Energy Homes have already been designed. The BASF house is now finished and the Stoneguard house, which is being constructed by students, is nearing completion.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>