Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 1930s semi goes green

23.04.2008
Three million of them were built; they stimulated a boom in employment and turned a nation of shop keepers into a nation of home owners.

The 1930s semi is an icon of its age but 80 years on it is about to undergo a green revolution.

Experts at The University of Nottingham together with the energy company E.ON have been granted special planning permission to build an original 1930s property. The house will be used to assess how to make best use of natural resources such as the sun, wind and rain, as well as for trialling the effectiveness of new carbon energy reducing technologies and materials.

The house will be built on University Park as is part of the School of Built Environment's Creative Energy Homes Project. It is one of six eco-homes being constructed as part of a prestigious study to stimulate sustainable design ideas and promote new ways of providing affordable, environmentally sustainable housing.

Dr Mark Gillott, research and project manager for Creative Energy Homes said: “The E.ON Research House project is an important addition to our site. 21 million homes in England (86% of the current stock) will still be in use by 2050. It is therefore vitally important that we identify and research technologies aimed at reducing the energy consumption associated with existing homes, these are issues that the vast majority of us can identify with.”

Construction of E.ON UK's 2016 research house is expected to be completed in August this year.

Once built the 1930s replica will be upgraded in several stages over three years to meet the highest green building requirements.

The central element of the design is a lightweight extension built from modules which will have a roof positioned to maximise the potential of solar panels. Low carbon technology will also be used to generate and manage energy within the house. The additional living space this provides could be used as additional work or family areas.

Reshaping today's 1930s housing stock for 21st century sustainable living will be a huge task. But Dave Clarke, Head of Research and Development at E.ON UK said: “Homes are big contributors to the causes of climate change, as they currently account for almost a third of the carbon dioxide emitted in the UK. The average house emits enough carbon to fill six hot air balloons full of CO2 in a year.

“Even with the Government's target for all new homes to be zero carbon from 2016, we'll have to retro-fit low carbon measure to existing homes in order to significantly reduce our carbon emissions.”

Dwellings in the UK account for approximately 28% of the UK total of carbon dioxide emissions through the burning of fossil fuel for heating, lights and appliances. This includes combustion on the premises, mainly natural gas for heating and cooking, and combustion in power stations to produce electricity for homes. Space heating accounts for 57%; water heating a further 25%; cooking 5% and lights and appliances 13%. The demand for energy to run heating/hot water systems and other home appliances such as refrigerators, cookers, lighting, etc is expected to be 13% higher in 2010 than it was in 1990.

As part of the project students will live in the house to assess the effectiveness of each stage in the eco-upgrade and monitoring equipment will be installed to measure the effectiveness of each of the upgrades.

Four of the new Creative Energy Homes have already been designed. The BASF house is now finished and the Stoneguard house, which is being constructed by students, is nearing completion.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>