Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuzzy logic water quality

21.04.2008
Broad analysis of pollutants using fuzzy logic could guide water quality improvement

A fuzzy logic approach to analyzing water quality could help reduce the number of people in the developing world forced to drink polluted and diseased water for survival. Writing in a forthcoming issue of the International Journal of Environmental Technology and Management, an Inderscience publication, researchers from the University of Malaya, explain how a new approach to water quality assessment uses fuzzy logic to combine disparate problems and provide a more accurate indicator of overall quality.

Rivers are often the main source of freshwater resources for citizens of developing nations. Their social well-being, economics and political development float on the availability and distribution of these freshwater resources. However, in many parts of the world dam construction, irrigation development, and flood mitigation have led to an increased incidence of diseases, such as malaria, Japanese encephalitis, schistosomiasis, lymphatic filariasis and others.

Water quality assessment is an essential part for maintaining good water quality, explained by Ramani Bai Gopinath and Mohamad Rom Tamjis. They explain that a river ecosystem and the quality of the water depend mainly on pH (acidity), levels of dissolved oxygen (DO), biochemical oxygen demand, suspended solids, and the presence of chemicals including chlorides, phosphates, nitrates and sodium.

The researchers have developed a data mining approach to water quality assessment that uses a Fuzzy Inference System (FIS) to extract patterns of river water quality from water sampling data. They have demonstrated the efficacy of this approach using data collected from the river Kerayong of the Klang river basin in West Malaysia.

The principle of "fuzzy" analysis is based on using approximations in the calculations rather than precise values to give a broad and potentially more useful response. Moreover it allows disparate parameters to be combined in a meaningful way even though their values may not be related. Just as apples and oranges are different but all represent the quality of fruitiness, so biochemical oxygen demand and chemical concentrations, for instance, may represent a particular aspect of water quality and so can be combined through fuzzy analysis.

In the present study, the fuzzy analysis of the river Kerayong reveals that it is highly polluted river with a very low water quality index, despite superficial analysis of individual parameters are necessary. This suggests that the quality of life of those relying on the river as a freshwater source could be improved considerably by addressing the individual pollution problems.

"We recommend further studies on data mining capabilities of the Fuzzy Inference System using more than six indicators of water quality," the researchers conclude.

Ramani Bai Gopinath | EurekAlert!
Further information:
http://www.um.edu.my

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>