Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater Microscope Helps Prevent Shellfish Poisoning Along Gulf Coast of Texas

14.04.2008
Novel instrument developed at WHOI detects harmful algae in coastal waters

Through the use of an automated, underwater cell analyzer developed at the Woods Hole Oceanographic Institution (WHOI), researchers and coastal managers were recently able to detect a bloom of harmful marine algae in the Gulf of Mexico and prevent human consumption of tainted shellfish.

Shellfish beds in parts of Texas have been closed for a month, though they are expected to re-open in the next few days.

Working with Rob Olson and Heidi Sosik—plankton biologists and instrument developers at WHOI—biological oceanographer Lisa Campbell of Texas A&M University used their “Imaging FlowCytobot” instrument to detect a substantial increase in the abundance of the algae Dinophysis acuminata in the waters of Port Aransas, Texas.

Dinophysis acuminata produces okadaic acid, a toxin that accumulates in shellfish tissues and can cause diarrhetic shellfish poisoning (DSP) in humans. DSP is not life-threatening, but symptoms include nausea, cramping, vomiting, and diarrhea. Cooking does not destroy the toxin in the shellfish.

The Imaging FlowCytobot, which is automated and submersible, counts microscopic plants in the water and photographs them. The images and data are relayed back to a shore-based laboratory, where specially developed software automatically classifies the plankton into taxonomic groups.

“It is very satisfying to find that a technology we developed as a research tool can be so effective for protecting human health,” said Olson, who has worked with Sosik for several years to prototype and modify flow cytometers, which are more typically used in many biological and medical laboratories.

“We designed the Imaging FlowCytobot for continuous monitoring of a wide range of plankton, and that turns out to be just what was needed to detect a harmful algal bloom that no one expected."

The discovery of the Dinophysis bloom came while the researchers were actually looking for something else. Campbell, Olson, Sosik, and colleagues deployed the instrument in the fall of 2007 at the University of Texas Marine Sciences Institute laboratory in the Mission Bay Aransas National Estuarine Research Reserve.

Their principal goal was to observe Karenia brevis, another toxic alga that blooms periodically in the Gulf and can lead to neurotoxic shellfish poisoning. The research team would like to observe the next K. brevis bloom before it happens; such blooms are most common and most extreme in the Gulf of Mexico in the late summer and fall.

The team is also working to catalog the types and relative abundances of marine plants in the area throughout the year.

In mid-February 2008, Campbell reviewed plankton images collected by the Imaging FlowCytobot and detected a substantial increase in the abundance of the dinoflagellate Dinophysis, which occurs naturally in ocean waters worldwide but not usually in harmful quantities.

“We have never before observed a bloom of Dinophysis acuminata at such levels in the Gulf of Mexico,” Campbell said.

After reporting the increase to fellow researchers in coastal Texas, Campbell and colleagues collected water samples to confirm that algal toxins were present in the water.

Other researchers collected oyster samples and sent them for toxin analysis at a U.S. Food and Drug Administration laboratory.

On March 8, the Texas Department of State Health Services closed Aransas, Corpus Christi, and Copano bays to shellfish harvesting and recalled Texas oysters, clams, and mussels that had been sold between March 1-7.

A week later, six other bays and estuaries along the coast were closed. As of April 11, most shellfishing areas had been re-opened, and the Aransas, Copano, and Corpus Christi were expected to re-open in a matter of days.

The bloom and subsequent warnings occurred just days before the Fulton Oysterfest, a major shellfish festival in the region. At last report, no shellfish-related human illnesses have been reported in Texas this spring.

“This is exactly what an early warning system should be,” said Campbell. “It should detect a bloom before people get sick. So often, we don’t figure out that there is a bloom until people are ill, which is too late. The Imaging FlowCytobot has proven itself effective for providing an early warning.”

“With time, we have come to see that the instrument has obvious practical uses,” added Sosik. “It now appears ready to make the transition from basic research tool to operative tool."

Funding for Campbell’s monitoring program and construction of the instrument was provided by the National Oceanic and Atmospheric Administration’s Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET).

Funding for instrument development and earlier prototypes of the FlowCytobot and the Imaging Flow Cytobot was provided by WHOI—through its Ocean Life Institute, Coastal Ocean Institute, Bigelow Chair, and Access to the Sea Fund—and by the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>