Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful algae taking advantage of global warming

07.04.2008
You know that green scum creeping across the surface of your local public water reservoir" Or maybe it’s choking out a favorite fishing spot or livestock watering hole. It’s probably cyanobacteria – blue-green algae – and, according to a paper in the April 4 issue of the journal Science, it relishes the weather extremes that accompany global warming.

Hans Paerl, a University of North Carolina at Chapel Hill Institute of Marine Sciences Professor and co-author of the Science paper, calls the algae the “cockroach of lakes.” It’s everywhere and it’s hard to exterminate – but when the sun comes up it doesn’t scurry to a corner, it’s still there, and it’s growing, as thick as 3 feet in some areas.

The algae has been linked to digestive, neurological and skin diseases and fatal liver disease in humans. It costs municipal water systems many millions of dollars to treat in the United States alone. And though it’s more prevalent in developing countries, it grows on key bodies of water across the world, including Lake Victoria in Africa, the Baltic Sea, Lake Erie and bays of the Great Lakes, Florida’s Lake Okeechobee and in the main reservoir for Raleigh, N.C.

“This is a worldwide problem,” said Paerl, Kenan Professor of marine and environmental sciences in UNC’s College of Arts and Sciences.

“It’s long been known that nutrient runoff contributes to cyanobacterial growth. Now scientists can factor in temperature and global warming,” said Paerl, who, with professor Jef Huisman from the University of Amsterdam, the Netherlands, explains the new realization in Science paper.

“As temperatures rise waters are more amenable to blooms,” Paerl said.

The algae also thrive in wet, soggy ground in areas experiencing periodic floods, like the U.S. Midwest. And in a drought, like the Southeastern United States is experiencing now, other algae and aquatic organisms die off, cyanobacteria thrive, waiting to explode

Warmer weather has also created longer growing seasons, and it’s enabled cyanobacteria to grow in northern waters previously too cold for their survival. Species first found in southern Europe in the 1930s now form blooms in northern Germany, and a Florida species now grows in the Southeastern U.S. Others have appeared recently places as far north as Montana and throughout Canada.

Fish and other aquatic animals and plants stand little chance against cyanobacteria. The algae crowds the surface water, shading out plants – fish food – below. The fish generally avoid cyanobacteria, so they’re left without food. And when the algae die they sink to the bottom where their decomposition can lead to extensive depletion of oxygen.

These cyanobacteria – blue-green algae – were the first plants on earth to produce oxygen.

“It’s ironic,” Paerl said. “Without cyanobacteria, we wouldn’t be here. Animal life needed the oxygen the algae produced.” Now, however, it threatens the health and livelihood of people who depend on infested waters for drinking water or income from fishing and recreational use.

These algae that were first on the scene, Paerl predicts, will be the last to go ... right after the cockroaches.

Clinton Colmenares | EurekAlert!
Further information:
http://www.unc.edu
http://www.unc.edu/ims/paerllab/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>