Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sudden 'ecosystem flips' imperil world's poorest regions

Canadian and Swedish researchers probe links between agriculture and environmental degradation like toxic algae blooms

Modern agriculture and land-use practices may lead to major disruptions of the world’s water flows, with potentially sudden and dire consequences for regions least able to cope with them researchers at the Stockholm University-affiliated Stockholm Resilience Centre and McGill University have warned.

In a paper published April 1 in the journal Trends in Ecology and Evolution, Dr. Line J. Gordon of the Stockholm Resilience Centre and the Stockholm Environment Institute and Dr. Garry Peterson and Dr. Elena Bennett of McGill University argue that global water management has been focused too much on the “blue water” side of the hydrological cycle, neglecting the largely invisible changes humanity has had on so-called “green water.”

“Blue water is the part of the cycle we can see, like streams and rivers,” said Gordon, an assistant professor at the Stockholm Resilience Centre and the Stockholm Environment Institute. “This is as opposed to ‘green water’ in soil moisture, or evapotranspiration from plants, which agriculture can affect in significant ways.”

“Resilience” describes the capacity of social-ecological systems to withstand climactic or economic shocks, and to then rebuild and renew themselves. In their paper, the researchers look at the likelihood of that vital resilience being lost in the aftermath of catastrophic changes to the hydrological cycle that could be caused by agriculture and land-use practices.

“Our main point is that these effects aren’t necessarily going to result in gradual change,” explained Peterson, McGill’s Canada Research Chair in Social-Ecological Modelling, and assistant professor in the Department of Geography and the McGill School of Environment. “They can result in surprising, dramatic changes, what we call 'ecosystem flips' or 'ecosystem regime changes,' which can be very difficult or even impossible to reverse.”

According to Peterson, recent outbreaks of toxic algae blooms in Quebec lakes and off Sweden’s Baltic Sea coast are prime examples of ecosystem flips, the consequence of nutrients from fertilizers permeating the soil and running off into streams, lakes and oceans.

“As you get more and more nutrients in the soil you eventually get to a point where you can even completely stop farming and all the nutrients will still be there,“ explained Bennett, an assistant professor at McGill's Department of Natural Resource Sciences and the School of Environment. “You go past a tipping point where it’s very difficult to reverse.”

Ecosystem flips can have significant and sometimes devastating effects on human well-being, as global populations suddenly lose resources they are dependent on, said the researchers. Some of the most vulnerable areas on Earth are places like the drylands of sub-Saharan Africa.

“In some of these regions we risk two types of ecosystem flips, one that causes rapid soil degradation with dramatic effects on yields and farmers' livelihoods, and another that affects rainfall and therefore also vegetation growth,” Gordon said.

“These are the places where populations are growing the fastest, people have the least amount of water per capita and are the poorest of any of the biomes of the world. They are also the regions most likely to be affected by climate change,” Peterson added.

As global demands for agriculture and water continue to grow, concluded the authors, it is increasingly urgent for scientists and managers to develop new ways to build resilience by anticipating, analyzing and managing changes in agricultural landscapes. Managing the green water component of the hydrological cycle is also important, as well as encouraging more diverse agricultural practices.

Regime shifts – a key issue at the Resilience2008 Conference, Stockholm Sweden, April 14-17 2008

The risk of catastrophic ecosystem regime shifts and the need for resilience-building are key issues at the upcoming international science and policy conference in Stockholm titled “Resilience, adaptation and transformation in turbulent times - preparing for change in social-ecological systems.”

Dr. Line J. Gordon and Dr. Garry Peterson will present their research at the conference. Keynote speakers include the father of resilience theory, Buzz Holling, leading political scientist Elinor Ostrom and renowned ecologist Steve Carpenter, to name a few. The last day of the conference will be devoted to a high-level policy forum on the implications of resilience science.

Mark Shainblum | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>