Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sudden 'ecosystem flips' imperil world's poorest regions

04.04.2008
Canadian and Swedish researchers probe links between agriculture and environmental degradation like toxic algae blooms

Modern agriculture and land-use practices may lead to major disruptions of the world’s water flows, with potentially sudden and dire consequences for regions least able to cope with them researchers at the Stockholm University-affiliated Stockholm Resilience Centre and McGill University have warned.

In a paper published April 1 in the journal Trends in Ecology and Evolution, Dr. Line J. Gordon of the Stockholm Resilience Centre and the Stockholm Environment Institute and Dr. Garry Peterson and Dr. Elena Bennett of McGill University argue that global water management has been focused too much on the “blue water” side of the hydrological cycle, neglecting the largely invisible changes humanity has had on so-called “green water.”

“Blue water is the part of the cycle we can see, like streams and rivers,” said Gordon, an assistant professor at the Stockholm Resilience Centre and the Stockholm Environment Institute. “This is as opposed to ‘green water’ in soil moisture, or evapotranspiration from plants, which agriculture can affect in significant ways.”

“Resilience” describes the capacity of social-ecological systems to withstand climactic or economic shocks, and to then rebuild and renew themselves. In their paper, the researchers look at the likelihood of that vital resilience being lost in the aftermath of catastrophic changes to the hydrological cycle that could be caused by agriculture and land-use practices.

“Our main point is that these effects aren’t necessarily going to result in gradual change,” explained Peterson, McGill’s Canada Research Chair in Social-Ecological Modelling, and assistant professor in the Department of Geography and the McGill School of Environment. “They can result in surprising, dramatic changes, what we call 'ecosystem flips' or 'ecosystem regime changes,' which can be very difficult or even impossible to reverse.”

According to Peterson, recent outbreaks of toxic algae blooms in Quebec lakes and off Sweden’s Baltic Sea coast are prime examples of ecosystem flips, the consequence of nutrients from fertilizers permeating the soil and running off into streams, lakes and oceans.

“As you get more and more nutrients in the soil you eventually get to a point where you can even completely stop farming and all the nutrients will still be there,“ explained Bennett, an assistant professor at McGill's Department of Natural Resource Sciences and the School of Environment. “You go past a tipping point where it’s very difficult to reverse.”

Ecosystem flips can have significant and sometimes devastating effects on human well-being, as global populations suddenly lose resources they are dependent on, said the researchers. Some of the most vulnerable areas on Earth are places like the drylands of sub-Saharan Africa.

“In some of these regions we risk two types of ecosystem flips, one that causes rapid soil degradation with dramatic effects on yields and farmers' livelihoods, and another that affects rainfall and therefore also vegetation growth,” Gordon said.

“These are the places where populations are growing the fastest, people have the least amount of water per capita and are the poorest of any of the biomes of the world. They are also the regions most likely to be affected by climate change,” Peterson added.

As global demands for agriculture and water continue to grow, concluded the authors, it is increasingly urgent for scientists and managers to develop new ways to build resilience by anticipating, analyzing and managing changes in agricultural landscapes. Managing the green water component of the hydrological cycle is also important, as well as encouraging more diverse agricultural practices.

Regime shifts – a key issue at the Resilience2008 Conference, Stockholm Sweden, April 14-17 2008

The risk of catastrophic ecosystem regime shifts and the need for resilience-building are key issues at the upcoming international science and policy conference in Stockholm titled “Resilience, adaptation and transformation in turbulent times - preparing for change in social-ecological systems.”

Dr. Line J. Gordon and Dr. Garry Peterson will present their research at the conference. Keynote speakers include the father of resilience theory, Buzz Holling, leading political scientist Elinor Ostrom and renowned ecologist Steve Carpenter, to name a few. The last day of the conference will be devoted to a high-level policy forum on the implications of resilience science.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>