Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral reefs and climate change: Microbes could be the key to coral death

03.04.2008
Recent die-off of corals unprecedented in the last 3,000 years

Coral reefs could be dying out because of changes to the microbes that live in them just as much as from the direct rise in temperature caused by global warming, according to scientists speaking today (Wednesday 2 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

Tropical ecosystems are currently balanced on a climate change knife edge. Corals in coral reefs, which are made up of animals called polyps that secrete hard external skeletons of calcium carbonate, are living perilously close to their upper temperature limits. This makes them very vulnerable to even small temperature rises of 1-2oC above the normal summer maximum.

“Many of the deaths we see in the coral reefs, which occur following coral bleaching events, when huge areas of reef die off like in 1998 when 17% of the world’s reefs were killed, can be put down to changes in the microbes which live in and around the reefs,” says Dr John Bythell, a biologist from Newcastle University. “These microbes can be thought of as being similar to the bacteria that normally live in our guts and help us digest our food.”

Changes in sea temperature caused by climate change and global warming affect corals, but they also affect the types of bacteria and other microflora that live with them. When the water warms up, some disease-causing bacteria are more successful and can attack the corals. The corals themselves suffer from heat, which reduces their defences. Also, some of the friendly bacteria that normally live in the corals’ guts become weakened, allowing other harmful bacteria to multiply and cause diseases or other problems.

For many communities in developing countries, which rely on coral reefs for their fisheries and tourism income, the loss of coral reefs has major impacts on their economies. They also lose valuable coastal defences and land to coastal erosion, affecting human welfare in the communities.

“We need a better understanding of the processes and mechanisms that impact on corals and the reefs when sea temperatures rise to confirm the ultimate causes of their decline,” says Dr Bythell. “Although local actions to reverse the overall decline in reef health are probably not feasible, we need this better understanding to try to reduce or eliminate contributing causes. Some of the changes in the microbes’ environment could be locally managed, for example by reducing general pollution, cutting soil erosion into the sea which chokes the reefs, and avoiding harmful run-off from farming practices.”

A key factor newly identified by the Newcastle team is the role of surface mucus secreted by corals. This seems to act as a shield, preventing disease-causing pathogens such as bacteria and some viruses from penetrating their tissues.

“The reefs’ defensive mucus or slime is also at risk from stresses brought on by climate change. This seems to happen just at a time when some of the key functional microbe groups are changing, reducing the corals’ other defences and boosting some disease-causing bacteria, making them more virulent,” says Dr Bythell.

“If we want to protect and conserve these reefs for the future, we need to start acting now. And before we can do that we need a better understanding of the processes,” says Dr John Bythell. “The mass mortality of two of the dominant coral species in the Caribbean due to disease has been unprecedented in the last 3,000 years, which suggests a strong link to man-made activities.”

The Newcastle scientists are concerned that despite the clear relationship to underlying factors affecting the reefs which cause the diseases and bleaching, and the important role played by the microbes, microbiology and coral cellular biology are investigated largely independently by different groups of researchers using different approaches. According to Dr Bythell, scientists’ attempts to identify the underlying problems would be improved by combining molecular microbial techniques with coral cell and molecular approaches.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>