Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Does fishing on drifting fish aggregation devices endanger the survival of tropical tuna?

Fishermen hold empirical knowledge that tuna aggregate under floating objects, such as lengths of old rope, pieces of wood, or even large marine mammals.

There is still no full explanation for this aggregation behaviour, but the past 20 years have seen purse-seine fishery operators take advantage of the associated concentrations of fish. Fishermen cast off floating rafts equipped with buoys which act as FADs.

An enormous purse-seine net, deployed in a wide arc on either side of the vessel, encircles the school of tuna that come to shelter under the FAD. The lower part of the net is tightened, enclosing the fish in a hemisphere large enough to entrap a mass of tuna. (See diagram)

A sudden growth in the size of tropical tuna catches taken from under these artificial drifting objects was observed for the early 1990s. This was true especially for juveniles. Between 1996 and 2005 the average annual catch taken on FADs reached 1 115 000 tonnes, nearly a third of the global figure for tuna, all species considered together. In Japan, the fish processing industry furthermore had long reported that the flesh from floating-object associated tuna was less plump than that of specimens caught from free schools.

This prompted an IRD research team to investigate whether or not the practice of drifting FAD fishing could set up an ecological trap for the tropical tuna species.This trap concept is a notion from population biology used to describe situations in which the population falls following a sudden change in its environment, most often linked to human activity. An example is give by marine turtles which, after hatching on beaches, use the sparkle of moonlight on the sea surface to guide themselves back to the ocean. However, high light pollution levels on urbanized coastlines in certain regions disturbs their sense of direction. Young turtles therefore set off on a path that leads them to land, where they die from dehydration.

Over the past ten years, over 30% of world catches of skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus) and yellowfin (Thunnus albacares) tuna, the three tropical tuna species which can be caught at drifting FADs, have been achieved using this fishing method. For the skipjack amounts taken under drifting FADs reached even as high as 72% of all catches. To check if the large-scale deployment of drifting FADs could present an ecological trap for these species, a range of biological (fish plumpness, growth rate, stomach fullness) and ecological (migration pattern and distance) indices were determined on yellowfin and skipjack captured under FADs in the Atlantic and Indian Oceans. Comparison was then made with data gathered from free-school caught individuals of these same species. A salient finding was that 74% of drifting FAD-associated skipjack had empty stomachs at the moment of capture compared with only 13% for those fished from free schools. Figures of the same order of magnitude were obtained for yellowfin, with proportions respectively reaching 49% caught on drifting FADs and 7% from free schools. The survey indicated that the tuna caught under the FADs fed less well than those fished from free schools. Moreover, the fact that for the same weight the FAD-associated specimens caught showed lower plumpness than the free-school ones could reflect a deficiency in energy-reserve accumulation in those that concentrated around the floating devices.

The research team also sought to find out if the large-scale deployment of drifting FADs could affect the migration patterns of these far-travelling fish species. Tagging surveys allowed comparison of the nature of migrations accomplished by fish moving with the drift of FADs with that of non-FAD-associated individuals. The migration directions and displacement rates in terms of daily distances travelled were indeed affected by the presence of artificial floating objects. Drifting FADs therefore appeared to act as super-stimuli, like strong magnets exerting a binding attraction that leads the tuna towards ecologically inappropriate waters with scarcer food supplies. This survey brought support for a body of reasonable assumptions regarding the tuna behaviour. However, it did not provide certain confirmation of drifting FADs’ negative impact on the entire life cycle of these tuna species and therefore of their possible role as a true ecological trap. Nevertheless, the biological effects observed indicated that it would be more reasonable to preclude deployment of drifting FADs near coasts where tuna juveniles aggregate. These young fish represent the future of the whole stock and such a restriction would be a way of avoiding their being led astray, away from the zones which are ecologically most favourable to them.

Grégory Fléchet | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>