Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

The beaches of French Guiana constitute a major reproduction site for leatherback turtles.

This sea turtle, although a protected species, is threatened by human activity: it ingests plastics, get accidentally caught in fishing nets, sees its egg-laying sites destroyed and its adults hunted illegally for their meat and their eggs. Female turtles return to the same beach every two to three years to lay their eggs. What happens in the interval remains a mystery.

It is sometimes possible to spot them offshore in the North Atlantic. Some even swim to very high latitudes (Canada) in search of their favorite food (principally jellyfish). Argos beacons have recently revealed that some females were swimming in two principal directions: the north as would be expected, but also towards the African coast east of French Guiana.

The question is whether these locations represent two distinct feeding areas or simply an extra stopover in their migration to the far north.

Several French and Belgian scientists (University of Paris-Sud and the Laboratory for Oceanology of the University of Liège, respectively) have studied the question, in particular the carbon and nitrogen isotope ratios (d13C and d15N) in the blood and eggs of these turtles. Isotope ratios are indeed significant dietary markers and indicate, if conditions are favorable, the diet of the animals in recent days, weeks or months, depending on the tissue analyzed.

These analyses, published in this week’s PLoS ONE, are the culmination of long and painstaking fieldwork carried out by the team from the University of Paris-Sud in Guiana. Researchers worked around the clock spotting the turtles, identifying them thanks to their tags (electronic chips serving to identify the animals), and taking blood and egg samples. Some of the sampled females had laid their eggs on the same beach two years previously, others three.

Analysis of the samples showed that the carbon and nitrogen isotrope ratios were different for each group, which suggests that the turtles had had a different diet before laying their eggs. These isotope ratios (especially the carbon ratios) are indicative of a dichotomy in the feeding areas of the two groups: one fed in the high latitudes of the North Atlantic's pelagic zone, the other in the low latitudes of the North Atlantic off the African and Iberian coasts. The existence of these two distinct feeding areas remains to be confirmed over the long run (through the observation of sea turtles), but these preliminary results already show how urgent it is to determine the precise geographical feeding areas used by the leatherback turtles as well as the duration of their visit during the interval between egg-layings.

The fact that leatherback turtles use two distinct feeding areas over a long period has major implications as far as their preservation is concerned. If one of these two habitats were to be damaged because of overfishing, pollution, sea traffic, etc, this could have dramatic repercussions on the survival of the species.

Andrew Hyde | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>