Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral's Addiction to 'Junk Food'

25.03.2008
Over two hundred million humans depend for their subsistence on the fact that coral has an addiction to ‘junk food’ - and orders its partners, the symbiotic algae, to make it.

This curious arrangement is one of Nature’s most delicate and complex partnerships – a collaboration now facing grave threats from climate change.

The symbiosis between coral – a primitive animal – and zooxanthellae, tiny one-celled plants, is not only powerful enough to build the largest living organism on the planet, the Great Barrier Reef but also underpins the economies and living standards of many tropical nations and societies who harvest their food from the reefs or have developing tourism industries.

The issue of whether the partnership is robust enough to withstand the challenges of climate change is driving a worldwide scientific effort to decipher how corals and their symbiotic algae communicate with one another, says Professor David Yellowlees of the ARC Centre of Excellence for Coral Reef Studies (CoECRS) and James Cook University.

“It’s an incredibly intricate relationship in which the corals feed the algae and try to control their diet, and the algae in turn use sunlight to produce “junk food” – carbohydrates and fats – for the corals to consume.

“Where it all breaks down is when heated water lingers over the reef and the corals expel the algae and then begin to slowly starve to death. This is the bleaching phenomenon Australians are by now so familiar with, and which is such a feature of global warming.”

The challenge for scientists is to understand the ‘chemical conversation’ that goes on between the corals and zooxanthellae, the genes which control it – and to explore whether corals which lose their primary partners can survive using other algae or must inevitably die.

Prof Yellowlees and Dr Bill Leggat will shortly release a new review of the current state of knowledge about the metabolism of the coral symbiosis in the journal Plant Cell and Environment.

“Coral symbiosis takes place mainly in clear, clean nutrient-poor waters where food is so scarce the corals need a partner to help feed them.

“We know for example the corals provide carbon as CO2 which is processed by the algae to reprocess into carbohydrates and fats using energy from sunlight, so they can feed. It’s a beautiful recycling process.

“The corals control the diet of the algae, to ensure it produces what they need. You could say they farm the algae, much as we farm crops.

“And the algae serve as the junk food chefs, providing the corals favourite food to order.”

“Researchers in the Centre of Excellence are trying to understand the chemical and genetic basis for the conversation that goes on between a coral and its particular algae, and to establish whether, if it loses its algae in a bleaching event, it can establish the same relationship with a different strain of algae.

“In other words, how robust this symbiotic system is and whether it can withstand shocks from warming, ocean acidification, changes in sunlight levels and other likely impacts from human activity.

“The bottom line here is the survival of the Great Barrier Reef and coral reefs the world over.”

Five times in the Earth’s history corals have been wiped out, or very close to it, suggesting they are highly vulnerable to changes in ocean conditions, Prof. Yellowlees says. Some of these past events were probably triggered by past global warming and ocean acidification.

Some scientists have speculated whether corals in crisis can be given a helping hand by humans in the form of new symbiotic algae reared for the purpose – but these are very hard to grow outside of their coral hosts, and Prof Yellowlees is doubtful this is a practical solution to major bleaching events affecting thousands of square kilometres of reef.

More likely, he feels, is that cryptic strains of algae which currently play little role in the symbiosis but are present in corals may be able to take over the role of junk food chef and keep the corals going on their preferred diet. To what extent this can happen is not yet known.

More information:
Prof. David Yellowlees, CoECRS and JCU, 0438 164 824 or 07 4781 6249/6402 (o)
Dr Bill Leggat, CoECRS and JCU, 07 47581372 (ah) or 07 4781 6923 (o)
Jim O’Brien, James Cook University Media Office, 0418 892 449 or 07 4781 4822

David Yellowlees | EurekAlert!
Further information:
http://www.coralcoe.org.au

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>