Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black carbon pollution emerges as major player in global warming

25.03.2008
Soot from biomass burning, diesel exhaust has 60 percent of the effect of carbon dioxide on warming but mitigation offers immediate benefits

Black carbon, a form of particulate air pollution most often produced from biomass burning, cooking with solid fuels and diesel exhaust, has a warming effect in the atmosphere three to four times greater than prevailing estimates, according to scientists in an upcoming review article in the journal Nature Geoscience.

Scripps Institution of Oceanography at UC San Diego atmospheric scientist V. Ramanathan and University of Iowa chemical engineer Greg Carmichael, said that soot and other forms of black carbon could have as much as 60 percent of the current global warming effect of carbon dioxide, more than that of any greenhouse gas besides CO2. The researchers also noted, however, that mitigation would have immediate societal benefits in addition to the long term effect of reducing greenhouse gas emissions.

The article, “Global and regional climate changes due to black carbon,” will be posted in the online version of Nature Geoscience on Sunday, March 23.

“Observationally based studies such as ours are converging on the same large magnitude of black carbon heating as modeling studies from Stanford, Caltech and NASA,” said Ramanathan. “We now have to examine if black carbon is also having a large role in the retreat of arctic sea ice and Himalayan glaciers as suggested by recent studies.”

In the paper, Ramanathan and Carmichael integrated observed data from satellites, aircraft and surface instruments about the warming effect of black carbon and found that its forcing, or warming effect in the atmosphere, is about 0.9 watts per meter squared. That compares to estimates of between 0.2 watts per meter squared and 0.4 watts per meter squared that were agreed upon as a consensus estimate in a report released last year by the Intergovernmental Panel on Climate Change (IPCC), a U.N.-sponsored agency that periodically synthesizes the body of climate change research.

Ramanathan and Carmichael said the conservative estimates are based on widely used computer model simulations that do not take into account the amplification of black carbon’s warming effect when mixed with other aerosols such as sulfates. The models also do not adequately represent the full range of altitudes at which the warming effect occurs. The most recent observations, in contrast, have found significant black carbon warming effects at altitudes in the range of 2 kilometers (6,500 feet), levels at which black carbon particles absorb not only sunlight but also solar energy reflected by clouds at lower altitudes.

Between 25 and 35 percent of black carbon in the global atmosphere comes from China and India, emitted from the burning of wood and cow dung in household cooking and through the use of coal to heat homes. Countries in Europe and elsewhere that rely heavily on diesel fuel for transportation also contribute large amounts.

“Per capita emissions of black carbon from the United States and some European countries are still comparable to those from south Asia and east Asia,” Ramanathan said.

In south Asia, pollution often forms a prevalent brownish haze that has been termed the “atmospheric brown cloud.” Ramanathan’s previous research has indicated that the warming effects of this smog appear to be accelerating the melt of Himalayan glaciers that provide billions of people throughout Asia with drinking water. In addition, the inhalation of smoke during indoor cooking has been linked to the deaths of an estimated 400,000 women and children in south and east Asia.

Elimination of black carbon, a contributor to global warming and a public health hazard, offers a nearly instant return on investment, the researchers said. Black carbon particles only remain airborne for weeks at most compared to carbon dioxide, which remains in the atmosphere for more than a century. In addition, technology that could substantially reduce black carbon emissions already exists in the form of commercially available products.

Ramanathan said that an observation program for which he is currently seeking corporate sponsorship could dramatically illustrate the benefits. Known as Project Surya, the proposed venture would provide some 20,000 rural Indian households with smoke-free cookers and equipped to transmit data. At the same time, a team of researchers led by Ramanathan would observe air pollution levels in the region to measure the effect of the cookers.

Carmichael said he hopes that the paper’s presentation of the immediacy of the benefits will make it easier to generate political and regulatory momentum toward reduction of black carbon emissions.

“It offers a chance to get better traction for implementing strategies for reducing black carbon,” he said.

The National Science Foundation, the National Oceanic and Atmospheric Administration and the National Aeronautics and Space Administration funded the review.

Rob Monroe | EurekAlert!
Further information:
http://www.ucsd.edu
http://scripps.ucsd.edu
http://scrippsnews.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>