Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Ground Penetrating Radar to Observe Hidden Underground Water Processes

25.03.2008
In the February issue of Vadose Zone Journal, researchers present applications of radar technology for exploring the properties and movement of water beneath our feet.

SON, WI, March 17, 2008 -- To meet the needs of a growing population and to provide it with a higher quality of life, increasing pressures are being placed on the environment through the development of agriculture, industry, and infrastructures.

Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels with biofuels for energy production have been recognized as potential threats to water resources and sustained agricultural productivity.

The top part of the earth between the surface and the water table is called the vadose zone. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff, groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the earth’s surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially affect climate change.

The vadose zone’s inherent spatial variability and inaccessibility make direct observation of the important belowground (termed “subsurface”) processes difficult. Conventional soil sampling is destructive, laborious, expensive, and may not be representative of the actual variability over space and time. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone.

In particular, approaches integrating water movement, geological, and physical principles (called hydrogeophysics) applied at relevant scales are required to appraise dynamic belowground phenomena and to develop optimal sustainability, exploitation, and remediation strategies.

Among existing geophysical techniques, ground-penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. GPR is based on the transmission and reception of electromagnetic waves into the ground, whose propagation velocity and signal strength is determined by the soil electromagnetic properties and spatial distribution. As the electric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content.

In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil layering, locate water tables, follow wetting front movement, estimate soil water content, assist in subsurface hydraulic parameter identification, assess soil salinity, and support the monitoring of contaminants.

The February 2008 issue of Vadose Zone Journal includes a special section that presents recent research advances and applications of GPR in hydrogeophysics. The studies presented deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and processing techniques for soil hydraulic properties estimation, and joint interpretation of GPR data with other sources of information.

“GPR has known a rapid development over the last decade,” notes Sébastien Lambot, who organized the special issue. “Yet, several challenges must still be overcome before we can benefit from the full potential of GPR. In particular, more exact GPR modeling procedures together with the integration of other sources of information, such as other sensors or process knowledge, are required to maximize quantitative and qualitative information retrieval capabilities of GPR. Once this is achieved, GPR will be established as a powerful tool to support the understanding of the vadose zone hydrological processes and the development of optimal environmental and agricultural management strategies for our soil and water resources.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://vzj.scijournals.org/cgi/content/full/7/1/137

Vadose Zone Journal, http://www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone. VZJ is a peer-reviewed, international, online journal publishing reviews, original research and special sections on across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) www.soils.org is a scientific society based in Madison, Wisconsin, which helps its 6,000+ members advance the disciplines and practices of soil science by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>