Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat makes first ever observation of regionally elevated CO2 from manmade emissions

19.03.2008
Using data from the SCIAMACHY instrument aboard ESA's Envisat environmental satellite, scientists have for the first time detected regionally elevated atmospheric carbon dioxide – the most important greenhouse gas that contributes to global warming – originating from manmade emissions.

More than 30 billion tonnes of extra carbon dioxide (CO2) is released into the atmosphere annually by human activities, mainly through the burning of fossil fuels.

According to the latest report by the Intergovernmental Panel on Climate Change (IPCC), this increase is predicted to result in a warmer climate with rising sea levels and an increase of extreme weather conditions. Predicting future atmospheric CO2 levels requires an increase in our understanding of carbon fluxes.

Dr Michael Buchwitz from the Institute of Environmental Physics (IUP) at the University of Bremen in Germany and his colleagues detected the relatively weak atmospheric CO2 signal arising from regional ‘anthropogenic’, or manmade, CO2 emissions over Europe by processing and analysing SCIAMACHY data from 2003 to 2005.

As illustrated in the image, the findings show an extended plume over Europe’s most populated area, the region from Amsterdam in the Netherlands to Frankfurt, Germany.

Carbon dioxide emissions occur naturally as well as being created through human activities, like the burning of fossil fuels (oil, coal, gas) for power generation, industry and traffic.

"The natural CO2 fluxes between the atmosphere and the Earth’s surface are typically much larger than the CO2 fluxes arising from manmade CO2 emissions, making the detection of regional anthropogenic CO2 emission signals quite difficult," Buchwitz explained.

"This does not mean, however, that the anthropogenic fluxes are of minor importance. In fact, the opposite is true because the manmade fluxes are only going in one direction whereas the natural fluxes operate in both directions, taking up atmospheric CO2 when plants grow, but releasing most or all of it again later when the plants decay. This results in higher atmospheric CO2 concentrations in the first half of a year followed by lower CO2 during the second half of a year with a minimum around August.

"That we are able to detect regionally elevated CO2 over Europe shows the high quality of the SCIAMACHY CO2 measurements."

Buchwitz says further analysis is required in order to draw quantitative conclusions in terms of CO2 emissions. "We verified that the CO2 spatial pattern that we measure correlates well with current CO2 emission databases and population density but more studies are needed before definitive quantitative conclusions concerning CO2 emissions can be drawn."

Significant gaps remain in the knowledge of carbon dioxide’s sources, such as fires, volcanic activity and the respiration of living organisms, and its natural sinks, such as the land and ocean.

"We know that about half of the CO2 emitted by mankind each year is taken up by natural sinks on land and in the oceans. We do not know, however, where exactly these important sinks are and to what extent they take up the CO2 we are emitting, i.e., how strong they are.

"We also don’t know how these sinks will respond to a changing climate. It is even possible that some of these sinks will saturate or turn into a CO2 source in the future. With our satellite measurements we hope to be able to provide answers to questions like this in order to make reliable predictions," Buchwitz said.

By better understanding all of the parameters involved in the carbon cycle, scientists can better predict climate change as well as better monitor international treaties aimed at reducing greenhouse gas emissions, such as the Kyoto Protocol which addresses the reduction of six greenhouse gases.

Last year, European Union leaders highlighted the importance of cutting emissions from these manmade gases by endorsing binding targets to cut greenhouse gases by at least 20 percent from 1990 levels by 2020.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMZHVM5NDF_index_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Dead trees are alive with fungi
10.01.2018 | Helmholtz Centre for Environmental Research (UFZ)

nachricht Management of mountain meadows influences resilience to climate extremes
10.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>