Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Streams natural filters, if not overloaded

Streams are natural filters that help remove and transform pollutants that drain from surrounding watersheds, including excess nitrogen from human activities. Scientists know this as a result of many hours of getting their hands – if not dirty, at least very wet -- monitoring streams nationwide.

“Nitrogen removal in streams is important because it reduces the potential for eutrophication – the excessive growth of algae and aquatic plants in downstream lakes and coastal marine waters,” said Jack Webster, professor of biology at Virginia Tech. “Eutrophication in the Chesapeake Bay has damaged the oyster industry in Virginia and in the Gulf of Mexico, the Mississippi River has created a vast zone of oxygen depletion with adverse effects on fisheries.”

Webster, two of his Virginia Tech colleagues, and four former Virginia Tech students are among 31 authors of an article in the March 13 issue of Nature that reports the researchers’ findings on how stream systems are able to remove nitrogen.

The study, lead by Oak Ridge National Laboratory (ORNL), looked at 72 streams in the U.S. and Puerto Rico over the course of three years. Virginia Tech’s Stream Team conducted measurements on nine streams in North Carolina – including forest streams in the southern Appalachian Mountains, agricultural streams where they had to protect equipment from curious cows, and urban streams, including one that ran through a golf course and another that ran through a construction site. Eight other teams worked at the other 63 streams.

The research process meant 24-hour monitoring. “The Stream Team involvement was very important,” said Webster.

In the first phase of the study, the scientists added small amounts of a non-radioactive isotope of nitrogen to streams as nitrate, the most prevalent form of nitrogen pollution. They then measured how far downstream the nitrate traveled and how what processes removed it from the water.

The scientists found that the nitrate was taken up from stream water by algae and microorganisms. In addition, a fraction was permanently removed from streams by denitrification, a bacterial process that converts nitrate to nitrogen gas, which harmlessly joins an atmosphere already predominantly composed of nitrogen gas.

In the second phase of the study, the scientists developed a model that predicts nitrate removal as water flows through small streams and into larger streams and rivers. “Our model showed that the entire stream network is important in removing pollution from stream water,” said Patrick Mulholland, lead author of the study, a member of ORNL’s Environmental Sciences Division, and a faculty member at the University of Tennessee. “In addition, the effectiveness of streams to remove nitrate was greatest if the streams were not overloaded by pollutants such as fertilizers and wastes from human activities.”

The largest removal occurred when nitrate entered small healthy streams and traveled throughout the network before reaching large rivers. The scientists concluded from their research that streams and rivers are effective filters that help reduce the amount of nitrate pollution exported from landscapes and thereby reduce eutrophication problems, Webster said.

Authors of the article, “Stream denitrification across biomes and its response to anthropogenic nitrate loading,” are Mulholland; Ashley M. Helton and Geoffrey C. Poole of the University of Georgia (UGA); Robert O. Hall Jr. of the University of Wyoming; Stephen K. Hamilton of Michigan State University; Bruce J. Peterson of Marine Biological Laboratory at Woods Hole; Jennifer L. Tank, a Virginia Tech Ph.D. graduate now at the University of Notre Dame; Linda R. Ashkenas of Oregon State University; Lee W. Cooper of the University of Tennessee; Clifford N. Dahm of the Univesity of New Mexico; Walter K. Dodds of Kansas State University, Stuart E. G. Findlay of the Institute of Ecosystem Studies, Millbrook, NY; Stanley V. Gregory of Oregon State; Nancy B. Grimm of Arizona State University; Sherri L. Johnson of the U.S. Forest Service, Corvallis, Ore.; William H. McDowell of the University of New Hampshire; Judy L. Meyer of UGA; H.Maurice Valett, associate professor of biological sciences at Virginia Tech; Webster; Clay P. Arango and Jake J. Beaulieu of Notre Dame; Melody J. Bernot of Ball State University; Amy J. Burgin of Michigan State; Chelsea L. Crenshaw, a Virginia Tech master’s of science graduate now at the University of New Mexico; Laura Taylor Johnson, who was a Virginia Tech undergraduate and is now at Notre Dame, B. R. (Bobbie) Niederlehner, laboratory specialist at Virginia Tech; Jonathan M. O’Brien of Michigan State; Jody D. Potter of the University of New Hampshire; Richard W. Sheibley of Arizona State; Daniel J. Sobota, who was a Virginia Tech undergraduate now at Oregon State; and Suzanne M. Thomas of Woods Hole.

There were many more people involved than even the list of co-authors reflects, Webster said. “This project was part of collaboration among a group of people who have worked together since 1995,” he said. “The undergraduate research with the Stream Team at Virginia Tech has been important in guiding students toward graduate school and careers.”

The National Science Foundation funded the research. The authors also thanked the U.S. Forest Service, National Park Service, and many private landowners for permission to conduct experiments on their lands.

Susan Trulove | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>