Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Streams natural filters, if not overloaded

14.03.2008
Streams are natural filters that help remove and transform pollutants that drain from surrounding watersheds, including excess nitrogen from human activities. Scientists know this as a result of many hours of getting their hands – if not dirty, at least very wet -- monitoring streams nationwide.

“Nitrogen removal in streams is important because it reduces the potential for eutrophication – the excessive growth of algae and aquatic plants in downstream lakes and coastal marine waters,” said Jack Webster, professor of biology at Virginia Tech. “Eutrophication in the Chesapeake Bay has damaged the oyster industry in Virginia and in the Gulf of Mexico, the Mississippi River has created a vast zone of oxygen depletion with adverse effects on fisheries.”

Webster, two of his Virginia Tech colleagues, and four former Virginia Tech students are among 31 authors of an article in the March 13 issue of Nature that reports the researchers’ findings on how stream systems are able to remove nitrogen.

The study, lead by Oak Ridge National Laboratory (ORNL), looked at 72 streams in the U.S. and Puerto Rico over the course of three years. Virginia Tech’s Stream Team conducted measurements on nine streams in North Carolina – including forest streams in the southern Appalachian Mountains, agricultural streams where they had to protect equipment from curious cows, and urban streams, including one that ran through a golf course and another that ran through a construction site. Eight other teams worked at the other 63 streams.

The research process meant 24-hour monitoring. “The Stream Team involvement was very important,” said Webster.

In the first phase of the study, the scientists added small amounts of a non-radioactive isotope of nitrogen to streams as nitrate, the most prevalent form of nitrogen pollution. They then measured how far downstream the nitrate traveled and how what processes removed it from the water.

The scientists found that the nitrate was taken up from stream water by algae and microorganisms. In addition, a fraction was permanently removed from streams by denitrification, a bacterial process that converts nitrate to nitrogen gas, which harmlessly joins an atmosphere already predominantly composed of nitrogen gas.

In the second phase of the study, the scientists developed a model that predicts nitrate removal as water flows through small streams and into larger streams and rivers. “Our model showed that the entire stream network is important in removing pollution from stream water,” said Patrick Mulholland, lead author of the study, a member of ORNL’s Environmental Sciences Division, and a faculty member at the University of Tennessee. “In addition, the effectiveness of streams to remove nitrate was greatest if the streams were not overloaded by pollutants such as fertilizers and wastes from human activities.”

The largest removal occurred when nitrate entered small healthy streams and traveled throughout the network before reaching large rivers. The scientists concluded from their research that streams and rivers are effective filters that help reduce the amount of nitrate pollution exported from landscapes and thereby reduce eutrophication problems, Webster said.

Authors of the article, “Stream denitrification across biomes and its response to anthropogenic nitrate loading,” are Mulholland; Ashley M. Helton and Geoffrey C. Poole of the University of Georgia (UGA); Robert O. Hall Jr. of the University of Wyoming; Stephen K. Hamilton of Michigan State University; Bruce J. Peterson of Marine Biological Laboratory at Woods Hole; Jennifer L. Tank, a Virginia Tech Ph.D. graduate now at the University of Notre Dame; Linda R. Ashkenas of Oregon State University; Lee W. Cooper of the University of Tennessee; Clifford N. Dahm of the Univesity of New Mexico; Walter K. Dodds of Kansas State University, Stuart E. G. Findlay of the Institute of Ecosystem Studies, Millbrook, NY; Stanley V. Gregory of Oregon State; Nancy B. Grimm of Arizona State University; Sherri L. Johnson of the U.S. Forest Service, Corvallis, Ore.; William H. McDowell of the University of New Hampshire; Judy L. Meyer of UGA; H.Maurice Valett, associate professor of biological sciences at Virginia Tech; Webster; Clay P. Arango and Jake J. Beaulieu of Notre Dame; Melody J. Bernot of Ball State University; Amy J. Burgin of Michigan State; Chelsea L. Crenshaw, a Virginia Tech master’s of science graduate now at the University of New Mexico; Laura Taylor Johnson, who was a Virginia Tech undergraduate and is now at Notre Dame, B. R. (Bobbie) Niederlehner, laboratory specialist at Virginia Tech; Jonathan M. O’Brien of Michigan State; Jody D. Potter of the University of New Hampshire; Richard W. Sheibley of Arizona State; Daniel J. Sobota, who was a Virginia Tech undergraduate now at Oregon State; and Suzanne M. Thomas of Woods Hole.

There were many more people involved than even the list of co-authors reflects, Webster said. “This project was part of collaboration among a group of people who have worked together since 1995,” he said. “The undergraduate research with the Stream Team at Virginia Tech has been important in guiding students toward graduate school and careers.”

The National Science Foundation funded the research. The authors also thanked the U.S. Forest Service, National Park Service, and many private landowners for permission to conduct experiments on their lands.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biol.vt.edu/research/streamteam/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>