Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing nitrogen pollution overwhelms filtering capability of streams

14.03.2008
Nationwide study says excess nitrogen loading reduces pollution-filtering efficiency of stream and river networks

MBL, WOODS HOLE, MA—Increasing nitrogen runoff from urban and agriculture land-use is interfering with our streams’ and rivers’ natural processes for reducing this pollutant before it endangers delicate downstream ecosystems, reports a nationwide team of 31 ecologists, including two from the MBL (Marine Biological Laboratory) Ecosystems Center.

The findings, published in the March 13 issue of Nature, are based on a major study of 72 streams in 8 regions across the U.S. and Puerto Rico. “It was a collaborative effort by many leading aquatic ecologists working to solve a complex problem regarding the role of streams in reducing pollution,” says lead author Patrick Mulholland of the Oak Ridge National Laboratory and University of Tennessee.

Just how important are streams" “They are effective filters that can help prevent nitrate pollution from reaching lakes and coastal oceans, where it can cause noxious algal blooms and lead to oxygen depletion and death of fish and shellfish, as has been recently reported in the Gulf of Mexico,” says Mulholland.

Building on an earlier study (Science, April 6, 2001) that demonstrated that even the smallest streams can filter up to half of the inorganic nitrogen that enters them, the scientists launched the new study to learn how increased nitrogen pollution is affecting this process. They analyzed data collected from a variety of waterways, including streams in urban and agricultural settings, where land-use dominates the landscape and degrades water quality.

“Our findings demonstrate that streams containing excess nitrogen are less able to provide the natural nitrogen removal service known as denitrification,” says Bruce Peterson, a senior scientist at the MBL Ecosystems Center and one of the study’s authors. In denitrification, bacteria help convert nitrate in the water to nitrogen gases that then escape to the atmosphere.

“The new research demonstrates that although denitrification rates increase as nitrate concentrations increase, the efficiency of denitrification and nitrate assimilation decline as nitrogen loading increases,” adds Peterson. “This means humans can easily overload stream and rivers networks to the point that nitrate removal is not sufficient to prevent eutrophication downstream, the scenario where algae grow out of the control and oxygen may fall to unhealthy levels.”

To gauge the effects of high levels of nitrogen runoff on waterways, the scientists used the stable isotope 15N (nitrogen 15) to track nitrogen movement through each study stream. They also developed ecological models to study nitrate removal from water within river networks, which develop as small streams flow into larger streams and rivers. The models showed that the entire stream network is important in removing nitrogen from stream water.

The ecologists say these and other findings in the Nature study underscore the importance of controlling human-generated nitrogen runoff, and provide critical information to land-use managers contemplating large-scale land conversions for projects including corn farming for biofuels production.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>