Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing nitrogen pollution overwhelms filtering capability of streams

14.03.2008
Nationwide study says excess nitrogen loading reduces pollution-filtering efficiency of stream and river networks

MBL, WOODS HOLE, MA—Increasing nitrogen runoff from urban and agriculture land-use is interfering with our streams’ and rivers’ natural processes for reducing this pollutant before it endangers delicate downstream ecosystems, reports a nationwide team of 31 ecologists, including two from the MBL (Marine Biological Laboratory) Ecosystems Center.

The findings, published in the March 13 issue of Nature, are based on a major study of 72 streams in 8 regions across the U.S. and Puerto Rico. “It was a collaborative effort by many leading aquatic ecologists working to solve a complex problem regarding the role of streams in reducing pollution,” says lead author Patrick Mulholland of the Oak Ridge National Laboratory and University of Tennessee.

Just how important are streams" “They are effective filters that can help prevent nitrate pollution from reaching lakes and coastal oceans, where it can cause noxious algal blooms and lead to oxygen depletion and death of fish and shellfish, as has been recently reported in the Gulf of Mexico,” says Mulholland.

Building on an earlier study (Science, April 6, 2001) that demonstrated that even the smallest streams can filter up to half of the inorganic nitrogen that enters them, the scientists launched the new study to learn how increased nitrogen pollution is affecting this process. They analyzed data collected from a variety of waterways, including streams in urban and agricultural settings, where land-use dominates the landscape and degrades water quality.

“Our findings demonstrate that streams containing excess nitrogen are less able to provide the natural nitrogen removal service known as denitrification,” says Bruce Peterson, a senior scientist at the MBL Ecosystems Center and one of the study’s authors. In denitrification, bacteria help convert nitrate in the water to nitrogen gases that then escape to the atmosphere.

“The new research demonstrates that although denitrification rates increase as nitrate concentrations increase, the efficiency of denitrification and nitrate assimilation decline as nitrogen loading increases,” adds Peterson. “This means humans can easily overload stream and rivers networks to the point that nitrate removal is not sufficient to prevent eutrophication downstream, the scenario where algae grow out of the control and oxygen may fall to unhealthy levels.”

To gauge the effects of high levels of nitrogen runoff on waterways, the scientists used the stable isotope 15N (nitrogen 15) to track nitrogen movement through each study stream. They also developed ecological models to study nitrate removal from water within river networks, which develop as small streams flow into larger streams and rivers. The models showed that the entire stream network is important in removing nitrogen from stream water.

The ecologists say these and other findings in the Nature study underscore the importance of controlling human-generated nitrogen runoff, and provide critical information to land-use managers contemplating large-scale land conversions for projects including corn farming for biofuels production.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>