Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing nitrogen pollution overwhelms filtering capability of streams

14.03.2008
Nationwide study says excess nitrogen loading reduces pollution-filtering efficiency of stream and river networks

MBL, WOODS HOLE, MA—Increasing nitrogen runoff from urban and agriculture land-use is interfering with our streams’ and rivers’ natural processes for reducing this pollutant before it endangers delicate downstream ecosystems, reports a nationwide team of 31 ecologists, including two from the MBL (Marine Biological Laboratory) Ecosystems Center.

The findings, published in the March 13 issue of Nature, are based on a major study of 72 streams in 8 regions across the U.S. and Puerto Rico. “It was a collaborative effort by many leading aquatic ecologists working to solve a complex problem regarding the role of streams in reducing pollution,” says lead author Patrick Mulholland of the Oak Ridge National Laboratory and University of Tennessee.

Just how important are streams" “They are effective filters that can help prevent nitrate pollution from reaching lakes and coastal oceans, where it can cause noxious algal blooms and lead to oxygen depletion and death of fish and shellfish, as has been recently reported in the Gulf of Mexico,” says Mulholland.

Building on an earlier study (Science, April 6, 2001) that demonstrated that even the smallest streams can filter up to half of the inorganic nitrogen that enters them, the scientists launched the new study to learn how increased nitrogen pollution is affecting this process. They analyzed data collected from a variety of waterways, including streams in urban and agricultural settings, where land-use dominates the landscape and degrades water quality.

“Our findings demonstrate that streams containing excess nitrogen are less able to provide the natural nitrogen removal service known as denitrification,” says Bruce Peterson, a senior scientist at the MBL Ecosystems Center and one of the study’s authors. In denitrification, bacteria help convert nitrate in the water to nitrogen gases that then escape to the atmosphere.

“The new research demonstrates that although denitrification rates increase as nitrate concentrations increase, the efficiency of denitrification and nitrate assimilation decline as nitrogen loading increases,” adds Peterson. “This means humans can easily overload stream and rivers networks to the point that nitrate removal is not sufficient to prevent eutrophication downstream, the scenario where algae grow out of the control and oxygen may fall to unhealthy levels.”

To gauge the effects of high levels of nitrogen runoff on waterways, the scientists used the stable isotope 15N (nitrogen 15) to track nitrogen movement through each study stream. They also developed ecological models to study nitrate removal from water within river networks, which develop as small streams flow into larger streams and rivers. The models showed that the entire stream network is important in removing nitrogen from stream water.

The ecologists say these and other findings in the Nature study underscore the importance of controlling human-generated nitrogen runoff, and provide critical information to land-use managers contemplating large-scale land conversions for projects including corn farming for biofuels production.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>