Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arctic climate models playing key role in polar bear decision

The pending federal decision about whether to protect the polar bear as a threatened species is as much about climate science as it is about climate change.

The U.S. Fish and Wildlife Service (FWS) is currently considering a proposal to list the polar bear as a threatened species under the Endangered Species Act, a proposal largely based on anticipated habitat loss in a warming Arctic.

Climate models - mathematical representations of the natural processes affecting climate - factored heavily in the scientific information requested by the FWS to guide its official recommendation, which was due Jan. 9. While scientists have used such models for decades, their use in this decision demonstrates the growing recognition of the value of modeling to predict future climate conditions and inform policymaking.

Eric DeWeaver, the physical climatologist on the International Polar Bear Science Team and a professor of atmospheric and oceanic sciences in the University of Wisconsin-Madison, evaluated existing climate models to identify those that best represent observed changes in sea ice - a crucial component of polar bear habitat - and which are expected to best predict future conditions in the Arctic.

His findings, detailed in a U.S. Geological Survey report provided to the FWS, were applied in subsequent reports to predict how Arctic sea ice changes over the next 100 years will likely affect polar bear populations.

These reports, available online at, formed the basis of the scientific guidance requested by the FWS.

Climate models strive to represent the physical laws that govern climate systems to forecast how climate will respond to changes, such as greenhouse gas increases. Due to the variability of natural systems and the difficulty of mathematically representing such complex systems, all models contain some element of uncertainty, DeWeaver says.

"A climate model is not a crystal ball," he says. "It's impossible to make a perfect representation of climate... There are choices you make in model development that lead to a range of model behaviors. Often it is not possible to say that one [model] is better than another."

A discussion of the uncertainty inherent to climate models sometimes creates the impression that the models cannot provide useful information, he says, which is absolutely not the case.

Instead, he likens climate modeling to other predictive sciences like weather forecasting and economics. While short-term predictions may accurately pinpoint specifics, longer-scale projections are expected to reveal bigger-picture trends but fewer details.

For Arctic sea ice, the trend is clear, DeWeaver says - all models point to widespread reductions in sea ice in coming decades. What's less certain is how much melting to expect and how quickly.

Since each model represents climate in a slightly different way, the exact degree of melting - and timing of the first occurrence of an ice-free Arctic - vary from model to model.

Far from being a drawback, these variations in model output are "enormously helpful in understanding a range of outcomes," DeWeaver says. "Having a multi-modal ensemble gives you a way to boil things down to the essentials," identifying the most robust changes consistent across several models.

Anticipated climate change has been a key element of the polar bear equation throughout the entire listing process, he says. Unlike most species considered for federal protection, polar bears' numbers have not yet shown significant decline.

However, escalating habitat losses anticipated due to global warming and other pressures are expected to severely impact bear populations in the near future, according to the listing petition filed by the advocacy group the Center for Biological Diversity.

In the scientific reports filed with the FWS, the climate models predict a loss of more than 40 percent of prime spring and summer polar bear habitat by 2050, based on current rates of greenhouse gas production. Polar bear biologists believe these losses will lead to the demise of more than 60 percent of the current population within the next 50 years, with near-extinction likely by the end of the century.

The application of climate science to this decision is a win-win situation for both scientists and policymakers, with the need for information driving advances in basic scientific knowledge and improved policy, DeWeaver says. "It sets a precedent that yes, you can use models [that include] uncertainty - and that's good," he says.

Eric DeWeaver | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>