Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealed: the secrets of successful ecosystems

13.03.2008
The productivity and biodiversity of an ecosystem is significantly affected by the rate at which organisms move between different parts of the ecosystem, according to new research out today (13 March 2008) in Nature.

Scientists hope that understanding the mechanisms which determine the diversity and productivity of ecosystems will help ecologists and conservationists to develop strategies to ensure that conservation areas are highly productive and rich in biodiversity.

The study used a lab-based artificial ecosystem of communities of bacteria to examine what happens when the bacteria move around and evolve to live in different parts of the ecosystem over the course of hundreds of generations. The scientists measured the effect this dispersal of species has on the productivity and biodiversity of the ecosystem over all.

'Productive' ecosystems are defined as those that support a large total amount of living matter, from tiny microbes up to plants and animals. Scientists refer to this measurement of the amount of life present as an ecosystem's 'biomass'. A number of studies in the last decade have shown that ecosystems that have a high biodiversity - meaning they are rich in variety of species - are also highly productive over short time scales, but until now the underlying processes creating this link between high levels of biodiversity and productivity over evolutionary time scales have not been understood.

The scientific team behind this new research found that both the biodiversity and productivity of an ecosystem are at a peak when there is an intermediate rate of dispersal of species - not too little and not too much - between different parts of the ecosystem.

When there is little or no dispersal, populations of species that remain in harsh areas of an ecosystem are unable to adapt to their environment due to a low population size and lack of genetic variation. Conversely, when there is too much dispersal in an ecosystem, species evolve to be 'generalists' that can survive in many habitats, but fail to thrive in any given one.

Dr Craig Maclean, one of the authors of the study at the NERC Centre for Population Biology at Imperial College London, explains that an intermediate rate of dispersal creates a 'happy medium' wherein species move around enough to ensure that harsh environments are adapted to, but not so much that they become generalists.

He says: "Dispersal constantly brings new individuals and new genes into harsh environments, which is essential for evolutionary adaptation to difficult environments. When species adapt to new environments it increases the productivity of the ecosystem and it can increase the biodiversity, as movement between different parts of an ecosystem provides more 'niches' for species to exploit."

To carry out the study, the research team created an artificial ecosystem for the bacterium Pseudomonas fluorescens. The ecosystem consisted of 95 different areas, each one containing a different food source. The scientists introduced the bacteria - which could eat approximately half of the 95 food sources - to the ecosystem, and then began to manipulate the rate at which the bacteria dispersed between the 95 different areas.

Every day during the experiment, the team measured the biomass in the ecosystem as an indicator of the ecosystem's productivity, and found that the levels of biomass were highest when there was an intermediate dispersal rate.

After 400 generations, the team isolated bacteria from the ecosystem and measured the ability of the bacteria to grow on each of the food sources. Using this data, the team were able to measure the diversity of the ecosystem, as it indicated how many different species had evolved from the bacteria which were originally introduced to the experiment, which could only eat half of the food sources available.

The research was carried out by an international team, led by Centre National de la Recherche Scientifique scientists at Montpellier 2 University in France, in collaboration with Imperial College London and the University of Liverpool.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>